C*-Algebras Associated With One Dimensional Almost Periodic Tilings

James A. Mingo
Department of Mathematics, Queen's University, Kingston, K7L 3N6, Canada

Received: 13 July 1995 / Accepted: 11 June 1996

Abstract

For each irrational number, $0<\alpha<1$, we consider the space of one dimensional almost periodic tilings obtained by the projection method using a line of slope α. On this space we put the relation generated by translation and the identification of the "singular pairs." We represent this as a topological space X_{α} with an equivalence relation R_{α}. On R_{α} there is a natural locally Hausdorff topology from which we obtain a topological groupoid with a Haar system. We then construct the C^{*}-algebra of this groupoid and show that it is the irrational rotation C^{*}-algebra, A_{α}.

Given a topological space X and an equivalence relation R on X, one can form the quotient space X / R and give it the quotient topology. It frequently happens however that the quotient topology has very few open sets. For example let X be the unit circle, which we shall write as [0,1] with the endpoints identified and the group law given by addition modulo 1 . Fix α, irrational, $0<\alpha<1$, and let $R=\{(x, y) \mid x-y \in \mathbb{Z}+\alpha \mathbb{Z}\}$. Since each equivalence class of R is dense in X, the only open sets in X / R are \emptyset and X / R.

However the equivalence relation R has the structure of a groupoid and if we can put a topology on R, (usually not the product topology of $X \times X$), so that R becomes a topological groupoid:
(i) $R \ni(x, y) \mapsto(y, x) \in R$ is continuous, and
(ii) $R^{2} \ni((x, y),(y, z)) \mapsto(x, z) \in R$ is continuous,
and we can find a compatible family $\left\{\mu^{x}\right\}$ of measures (μ^{x} is a measure on $R^{x}=$ $\{(x, y) \mid x \sim y\}$), called a Haar system (see Renault [7, Definition I.2.2]), one can construct a C^{*}-algebra, $\mathrm{C}^{*}(R, \mu)$, by completing $C_{o o}(R)$, the continuous functions on R with compact support in a suitable norm.

In the example above of the relation R on the unit circle S^{1}, suppose $(x, y) \in R$, so there is $n \in \mathbb{Z}$ such that $(x+n \alpha)-y \in \mathbb{Z}$ and let $\mathscr{U} \subseteq S^{1}$ be a neighbourhood

[^0]
[^0]: Research supported by the Natural Sciences and Engineering Research Council of Canada and the Fields Institute for Research in Mathematical Sciences.

