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Kauffman Bracket of Plane Curves
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Abstract: We lower the Kauffman bracket for links in a solid torus (see [16])
to generic plane fronts. It turns out that the bracket can be entirely defined in
terms of a front itself without using the Legendrian lifting. We show that all the
coefficients of the lowered bracket are in fact Vassilev type invariants of Arnold's
J+-theory [3, 4]. We calculate their weight systems. As a corollary we obtain that
the first coefficient is essentially the quantum deformation of the Bennequin invariant
introduced recently by M. Polyak [19].

There exists a straightforward way to get an invariant of an immersed cooriented
hypersurface C in a smooth manifold N. We lift C to the manifold M of cooriented
contact elements of N. This gives us an embedded submanifold LQ. NOW we take
the value of a known invariant of embeddings on LQ °-> M as the invariant of our
initial immersion C S-> N.

The manifold M of cooriented contact elements is the spherisation of the cotan-
gent bundle of TV: M — ST*N. It has a natural contact structure. Our lifting LQ
is a Legendrian submanifold with respect to this structure. The hypersurface C is
called the front of Zc The above procedure defines an invariant not only on im-
mersed C °r> N but also on submanifolds with some "admissible" singularities which
may appear as singularities of fronts of smooth Legendrian submanifolds generically
embedded into M.

The simplest situation is N = R2. The "admissible" singularities in this case are
cusps. Thus we can induce an invariant on collections of closed oriented and coori-
ented plane curves which may have only double points and cusps as singularities.
The manifold M of contact elements of the plane is the solid torus M — R2 x Sι.
So the lifted submanifolds are Legendrian links in it. This general approach was
used in [12] to define an invariant of an immersed plane curve. There a Kontsevich
type integral [11] was taken as a known invariant of knots in a solid torus. In a
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