

## **Entropic Repulsion of the Lattice Free Field, II. The 0-Boundary Case**

## Jean-Dominique Deuschel

Fachbereich Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany. E-mail: deuschel@math.tu-berlin.de

Received: 20 November 1995/Accepted: 17 April 1996

Abstract: This paper is a continuation of [5]. We consider the Euclidean massless free field on a box  $V_N$  of volume  $N^d$  with 0-boundary condition; that is the centered Gaussian field with covariances given by the Green function of the simple random walk on  $\mathbb{Z}^d$ ,  $d \ge 3$ , killed as it exits  $V_N$ . We show that the probability, that all the spins are positive in the box  $V_N$  decays exponentially at a surface rate  $N^{d-1}$ . This is in contrast with the rate  $N^{d-2} \log N$  for the infinite field of [5].

## 1. Introduction

The object of this paper is to analyze the asymptotical behavior of a Gibbsian Gaussian field, under the condition that the variables are positive in a large finite box. These asymptotics play an important role in the construction of droplets on a "hard surface", cf. [1, 6, 10], and in related questions dealing with quasi-locality, cf. [7], and entropic repulsion [7, 11].

More precisely, let  $\Lambda = [-1, 1]^d$  be the unit box in  $\mathbb{R}^d$  and set  $V_N = N\Lambda \cap \mathbb{Z}^d$ . Next consider the Gaussian field  $P_N^0$  on  $\Omega_N = \mathbb{R}^{V_N}$  with density with respect to the Lebesgue measure  $\lambda_N(dX) = \prod_{i \in V_N} dX(i)$  of the form

$$P_{N}^{0}(dX) = \frac{1}{Z_{N}} \exp\left(-\frac{1}{2} \sum_{\{i,j\} \cap V_{N} \neq \emptyset} Q_{d}(i,j) (X(i) - X(j))^{2}\right) \lambda_{N}(dX), \quad (1.1)$$

where  $Z_N$  is a normalizing constant,  $Q_d(i, j) = \frac{1}{2d} \mathbf{1}_{|i-j|=1}$  is the transition matrix of the simple random walk on  $\mathbb{Z}^d$ , and we set X(j) = 0 for  $j \notin V_N$ . Thus the spins are "tied down" at the boundary of  $V_N$ .  $P_N^0$  can be viewed as the finite Gibbs distribution on  $\Omega_N$  to the nearest neighbor quadratic interaction

$$\mathscr{J} = \{ J_{\{i,j\}}(X) = Q_{d}(i,j)(X(i) - X(j))^{2}, \ \{i,j\} \subseteq \mathbb{Z}^{d} \}$$

with 0-boundary conditions on  $V_N^{\complement}$ . We will be working in the transient dimensions  $d \ge 3$ ; then  $P_N^0$  converges weakly to  $P^0$ , the infinite Gibbs distribution, sometimes called (discrete) *Euclidean massless free field*.  $P^0$  is the centered Gaussian field on