

A Variational Problem for a System of Magnetic Monopoles Joined by Abrikosov Vortices

J. Fröhlich, M. Leupp, U.M. Studer

Department of Mathematics and Physics, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland

Received: 2 October 1995/Accepted: 4 March 1996

Abstract: An action functional, related to the Higgs model to field theory, depending on a complex scalar field and a U(1) connection is defined. The complex scalar field is a section of a line bundle associated to a principal U(1)-bundle with base space $\mathbb{R}^3 \setminus \{x_1, \ldots, x_n\}$. The points x_1, \ldots, x_n are the positions of *n* magnetic monopoles of magnetic charges m_1, \ldots, m_n , with $\sum_{i=1}^n m_i = 0$. The existence of minimizers of the action functional is proven using direct methods of the calculus of variation. Regularity and decay properties of the minimizers are obtained. By constructing explicit comparison field configurations, we establish accurate upper and lower bounds for the action of the minimizers in a variety of special situations, e.g. n = 2 and $m_1 = -m_2$.

Contents

1.	Introduction	447
2.	Existence Results	454
3.	Regularity Results and Exponential Decay	459
3.1	Regularity away from the singularities	459
3.2	Regularity in the neighbourhood of the singularities	460
3.3	Exponential Decay	465
4.	Bounds on the Action of the Minimizers	467
A.	Appendix	481
References		

1. Introduction

The variational problem studied in this paper arises in the description of the quantum counterparts of classical vortex configurations in the U(1)-Higgs model in 2 + 1 space-time dimensions. Using Euclidean functional integral methods to construct the Green functions of the U(1)-Higgs model one is led to study the classical variational problem described in the abstract: In attempting to calculate these Green