Low Temperature Phase Diagrams for Quantum Perturbations of Classical Spin Systems

C. Borgs^{1, *}, R. Kotecký^{2, **}, D. Ueltschi³

¹ School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

² Centre de Physique Théorique, CNRS, Marseille, France

³ Institut de Physique Théorique, EPF Lausanne, Switzerland. E-mail: ueltschi@elda.epfl ch

Received: 10 June 1995/Accepted: 14 February 1996

Abstract: We consider a quantum spin system with Hamiltonian

$$H = H^{(0)} + \lambda V,$$

where $H^{(0)}$ is diagonal in a basis $|s\rangle = \bigotimes_{x} |s_{x}\rangle$ which may be labeled by the configurations $s = \{s_{x}\}$ of a suitable classical spin system on \mathbb{Z}^{d} ,

$$H^{(0)}|s\rangle = H^{(0)}(s)|s\rangle.$$

We assume that $H^{(0)}(s)$ is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitations, while V is a finite range or exponentially decaying quantum perturbation. Mapping the d dimensional quantum system onto a *classical* contour system on a d + 1 dimensional lattice, we use standard Pirogov–Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical Hamiltonian $H^{(0)}$, provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper.

1. Introduction

1.1. General ideas. Many models of classical statistical mechanics provide examples of first-order phase transitions and phase coexistence at low temperatures. It became clear already from the first proof of such a transition for the Ising model by the Peierls argument [Pei36, Gri64, Dob65] that a convenient tool for the study of phase coexistence and first-order phase transitions is a representation in terms of configurations of geometrical objects – contours. This has been systematically

^{*}Heisenberg Fellow, on leave from Institut für Theoretische Physik, Freie Universität Berlin E-mail: borgs@dirac physik.fu-berlin de

^{**}On leave of absence from Center for Theoretical Study, Charles University, Praha Partly supported by the grants GAČR 202/93/0449 and GAUK 376 E-mail: kotecky@cucc ruk cuni cz