The 1/N-Expansion as a Perturbation about the Mean Field Theory: A One-Dimensional Fermi Model

D.H.U. Marchetti^{1,*}, P.A. Faria da Veiga^{2,**}, T.R. Hurd^{3,***}

¹ Instituto de Física, Universidade de São Paulo, 01452 São Paulo, SP, Brazil

² ICMSC, Universidade de São Paulo, 13560 São Carlos, SP, Brazil

³ Department of Mathematics & Statistics, McMaster University, Hamilton, Canada L8S 4K1

Received: 5 April 1995/Accepted: 15 January 1996

Abstract: We examine a family of probability measures on \mathbf{R}^{L} with real parameter $\zeta > 0$ and integer parameters N, L > 0. Each such measure is equivalent to the lattice version of a one-dimensional discrete chiral-invariant fermionic quantum field theory with quartic interaction, with N the number of flavours. After applying the Matthews–Salam formula, the model becomes a statistical mechanical model of a chain of continuous Gaussian spins, coupled with a certain non-standard weight function. Finally, the model can also be considered as a probability measure on the set of tridiagonal matrices with fixed off-diagonal and random diagonal entries.

Our analysis shows how to develop an asymptotic expansion in 1/N, valid for all L and ζ , for the fundamental expectation values. From this it follows that the two point fermion correlation function decays with a mass which agrees to the leading order in 1/N with the mean field value calculated by the argument of Gross-Neveu. The analytical technique we develop in essence combines a transfer matrix method with the Laplace method (steepest descent) for asymptotics of integrals.

1. Introduction

It was argued some years ago [NJ, GN] that a chiral invariant fermion theory with quartic interaction will acquire a mass dynamically by spontaneous symmetry breaking. The effective potential shows degenerate minima in the one-loop approximation, leading to a ground state with non-vanishing expectation of $\bar{\psi}\psi$.

Rigorous control of multi-phase theories was developed by Glimm–Jaffe–Spencer [GJS] who devised an expansion about the mean field theory by combining a cluster expansion with an expansion in phase boundaries.

The present paper is part of a program which aims at understanding the mechanism by which mass is generated dynamically in models with four-fermion interactions. We here consider a one-dimensional discrete chiral lattice model and show

^{*} Partially supported by FAPESP and CNPq.

^{}** Partially supported by CNPq.

^{***} Supported by the Natural Sciences and Engineering Research Council of Canada.