Quantization of Poisson-Lie Groups and Applications

Frederic Bidegain, Georges Pinczon
Laboratoire d'Algèbre et d'Analyse: Théorie des Représentations, Département de Mathématiques, Université de Bourgogne, B P 138, F-21 004 Dijon Cedex, France
e-mail: physmath@satie u-bourgogne.fr

Received: 20 July 1995 / Accepted: 6 November 1995

Abstract

Let G be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd: can G be quantized? and give some answers. When G is semisimple (a case where the answer is yes), we introduce quantizable Poisson subalgebras of $C^{\infty}(G)$, related to harmonic analysis on G; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.

Introduction*

Quantization in the framework of deformation theory (deformation quantization [26]) was initiated in [2]. The deformation-quantization program of symplectic structures ([2]) leads to various and deep applications in physics and mathematics (e.g. index theory [8 and 26]). The existence of quantizations was first proved using some technical assumptions (essentially vanishing of the cohomology group where obstruction sits), and then in full generality: actually, any symplectic Poisson bracket can be quantized ([9 and 26]).

In his Berkeley report [10b], Drinfel'd proposed a similar program of quantization in the case of Poisson-Lie group structures. Here, deformation of algebras will not be enough: one has to deform Hopf algebra structures. In order to quantify the standard Poisson-Lie bracket on simple groups, Drinfel'd introduced deformations of enveloping algebras, which became very popular under the name of quantum groups. These structures contain a lot of combinatorial information, and happened to have fundamental applications (e.g. knot theory [19a and 23]), via their universal R-matrix. In [10d], a very natural question was asked: can any Poisson-Lie structure be quantized? This question is, in fact, a multivalued one, since it ${ }^{\circ}$ can be given at least three interpretations, each of which leads to a particular problem, that we shall now state.

[^0]
[^0]: * Unexplained notations used in this introduction can be found in Sect. 1, Sect 4 (for Poisson algebras, Poisson-Lie groups, etc) and Appendix A (for representations of semisimple Lie groups)

