The Cohomology of the Space of Magnetic Monopoles

Graeme Segal ${ }^{1}$, Alex Selby ${ }^{2, \star}$
${ }^{1}$ DPMMS, 16 Mill Lane, Cambridge, CB2 1SB, England
${ }^{2}$ New Hall, Cambridge, CB3 0DF, England

Received: 8 April 1995 / Accepted: 12 June 1995

Abstract

Denote by X_{q} the reduced space of $S U_{2}$ monopoles of charge q in \mathbb{R}^{3}. In this paper the cohomology of X_{q}, the cohomology with compact supports of X_{q}, and the image of the latter in the former are all calculated as representations of $\mathbb{Z} / q \mathbb{Z}$ which acts on X_{2}. This provides a non-trivial "lower bound" for the L^{2} cohomology of X_{q} which is compatible with some conjectures of Sen. It is also shown that, granted some assumptions about the metric on X_{q}, its L^{2} cohomology does not exceed this bound in the situation referred to in the paper as the "coprime case".

1. Introduction

The moduli space \mathscr{M}_{q} of $S U_{2}$-monopoles of magnetic charge q in \mathbb{R}^{3} is a Riemannian manifold of dimension $4 q$. It has remarkable geometric properties, of which a comprehensive account can be found in [A-H]. Recently, to test hypotheses concerning electric-magnetic duality in non-abelian gauge theories [Sen], there has been interest in determining the square-summable harmonic forms on \mathscr{M}_{q} - or, more precisely, on a ($4 q-4$)-dimensional "reduced" moduli space X_{q} contained in it. To define the reduced space we first get rid of the free action of the group \mathbb{R}^{3} of translations by restricting to monopoles whose centre of mass is at the origin in \mathbb{R}^{3}. There is still a free action of the circle group \mathbb{T} which rotates the "phase" of a monopole. We cannot normalize the phase away completely, but we can fix it up to a $q^{\text {th }}$ root of unity. This gives us a simply connected manifold X_{q}, on which the cyclic group μ_{q} of $q^{\text {th }}$ roots of unity still acts freely by rotating the phase.

Let \mathscr{H}_{q}^{i} denote the space of square-summable harmonic i-forms on X_{q}. We can decompose \mathscr{H}_{q}^{i} according to the induced action of μ_{q}

$$
\mathscr{H}_{q}^{i}=\bigoplus \mathscr{H}_{q, p}^{i}
$$

where $\mathscr{H}_{q, p}^{i}$ is the part where the elements $\zeta \in \mu_{q}$ act by multiplication by ζ^{p}. Sen

[^0]
[^0]: * The work described here was carried out partly at the University of Texas at Austin.

