Spreading of Wave Packets in the Anderson Model on the Bethe Lattice

Abel Klein*

Department of Mathematics, University of California, Irvine, CA 92717-3875, USA. E-mail: aklein@math.uci.edu

Received: 5 April 1995

Abstract: The spreading of wave packets evolving under the Anderson Hamiltonian on the Bethe Lattice is studied for small disorder. The mean square distance travelled by a particle in a time t is shown to grow as t^2 for large t.

1. Introduction

The Anderson model [6] gives a description of the motion of a quantum-mechanical electron in a crystal with impurities. It is given by the random Schrödinger operator

$$H_{\lambda} = \frac{1}{2}\Delta + \lambda V$$
 on $l^2(\mathbb{L});$ (1.1)

where \mathbb{L} is either \mathbb{Z}^d or the Bethe lattice \mathbb{B} (same as Cayley tree—an infinite connected graph with no closed loops and a fixed number K+1 of nearest neighbors at each vertex ($K \ge 2$, so \mathbb{B} is not the line \mathbb{R}); the distance between two sites x and y in \mathbb{B} will be denoted by d(x, y) and is equal to the length of the shortest path connecting x and y). The (centered) Laplacian Δ is defined by

$$(\Delta u)(x) = \sum_{y} u(y), \qquad (1.2)$$

where the sum runs over all nearest neighbors of x in \mathbb{L} , and V is a random potential, with V(x), $x \in \mathbb{L}$, being independent, identically distributed random variables with common probability distribution μ . The real parameter λ is called the *disorder*. It follows from ergodicity that the spectrum of the Hamiltonian H_{λ} is given by

$$\sigma(H_{\lambda}) = \sigma\left(\frac{1}{2}\Delta\right) + \lambda \operatorname{supp} \mu \tag{1.3}$$

with probability one [33,9,3], where $\sigma(\frac{1}{2}\Delta)$ equals [-d,d] if $\mathbb{L} = \mathbb{Z}^d$ and $[-\sqrt{K}, \sqrt{K}]$ if $\mathbb{L} = \mathbb{B}$. The decomposition of $\sigma(H_{\lambda})$ into pure point spectrum, absolutely

^{*} The author was supported in part by the NSF Grant DMS-9208029.