Character Expansion Methods for Matrix Models of Dually Weighted Graphs

Vladimir A. Kazakov, Matthias Staudacher ${ }^{\star}$, Thomas Wynter ${ }^{\star}$
Laboratoire de Physique Théorique de l'École Normale Supérieure ${ }^{\star \star}$, Université de Paris Sud, 24 rue, Lhomond, F-75231 Paris Cedex 05, France

Received: 27 March 1995

Abstract

We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analysing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phase transitions from random to flat lattices. January 1995

1. Introduction

After the considerable success of two dimensional quantum field theory and statistical mechanics - integrable models on 2D regular lattices, conformal field theories, Liouville theory and matrix models of 2D gravity and non-critical strings - progress in analytical results in this field has slowed down.

Among the principal questions remaining unsolved are, first, the so-called $c=1$ barrier for non-critical strings (c is the central charge of the matter), and, second, the mysterious connection between the physical properties of various integrable 2D models coupled and non-coupled to gravity. The first problem is usually attributed to the absence of a stable vacuum for $c>1$, though it has never been clearly

[^0]
[^0]: \star This work is supported by funds provided by the European Community, Human Capital and Mobility Programme
 *ぇ Unité Propre du Centre National de la Recherche Scientifique, associée à l'École Normale Supérieure et à l'Université de Paris-Sud

