

Neumann Resonances in Linear Elasticity for an Arbitrary Body

P. Stefanov^{1, $\star,\star\star$}, G. Vodev²

¹ Institute of Mathematics, Bulgarian Academy of Sciences, Acad. G. Bontchev str., bl. 8, 1113
 Sofia, Bulgaria
 ² Université de Rennes 1, IRMAR, URA 305 du CNRS, Campus de Beaulieu, F-35042 Rennes

Cedex, France

Received: 6 December 1994

Abstract: We study resonances (scattering poles) associated to the elasticity operator in the exterior of an arbitrary obstacle in \mathbf{R}^3 with Neumann boundary conditions. We prove that there exists a sequence of resonances tending rapidly to the real axis.

1. Introduction

Let $\mathcal{O} \subset \mathbf{R}^3$ be a compact set with C^{∞} -smooth boundary Γ and connected complement $\Omega = \mathbf{R}^3 \setminus \mathcal{O}$. Denote by Δ_e the elasticity operator

$$\Delta_e v = \mu_0 \Delta v + (\lambda_0 + \mu_0) \nabla (\nabla \cdot v),$$

 $v = {}^{t}(v_1, v_2, v_3)$. Here λ_0, μ_0 are the Lamé constants and we assume that

$$\mu_0 > 0, \qquad 3\lambda_0 + 2\mu_0 > 0.$$
 (1)

Consider Δ_e in Ω with Neumann boundary conditions on Γ ,

$$\sum_{j=1}^{3} \sigma_{ij}(v) v_{j} \bigg|_{\Gamma} = 0, \quad i = 1, 2, 3,$$
(2)

where $\sigma_{ij}(v) = \lambda_0 \nabla \cdot v \delta_{ij} + \mu_0 \left(\frac{\partial v_L}{\partial x_j} + \frac{\partial v_J}{\partial x_i} \right)$ is the stress tensor, v is the outer normal to Γ . Denote by L the self-adjoint realization of $-\Delta_e$ in Ω with Neumann boundary conditions on Γ . As usual we define *resonances* as the poles of the meromorphic continuation of the cut-off resolvent $R_{\chi}(\lambda) = \chi(L - \lambda^2)^{-1}\chi$ from Im $\lambda < 0$ to the whole complex plane $\mathbf{C}, \chi \in C_0^{\infty}$ being a cut-off function equal to 1 near Γ . So we accept the convention that the resonances lie in the upper half-plane.

If one considers the Laplacian with Dirichlet or Neumann boundary conditions, then it is well known that for convex or more generally for non-trapping obstacles

^{*} Partly supported by BSF under grant MM 401.

^{**} Current address: Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Y4, Canada.