

On a Model for Quantum Friction, II. Fermi's Golden Rule and Dynamics at Positive Temperature

V. Jakšić¹, C.-A. Pillet²

 ¹ Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 55455-0436 Minneapolis, Minnesota, U.S.A.
² Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland

Departement de Thysique Theorique, Oniversite de Geneve, Ch-1211 Geneve 4, Switzen

Received: 6 December 1994/in revised form: 30 March 1995

Abstract: We investigate the dynamics of an *N*-level system linearly coupled to a field of mass-less bosons at positive temperature. Using complex deformation techniques, we develop time-dependent perturbation theory and study spectral properties of the total Hamiltonian. We also calculate the lifetime of resonances to second order in the coupling.

1. Introduction

Let \mathscr{A} be a quantum mechanical *N*-level system with energy operator H_A on the Hilbert space $\mathscr{H}_A = \mathbb{C}^N$. We denote by $E_1 < E_2 < \cdots < E_M$ the eigenvalues of H_A listed in increasing order. We will colloquially refer to \mathscr{A} as an *atom* or *small system*. Even though we formulate our results for the *N*-level system \mathscr{A} most of them will, in some sense, extend to situations where \mathscr{H}_A is infinite dimensional and H_A unbounded – see Remark 4 at the end of Sect. 2 for more details.

Let \mathscr{B} be an infinite heat bath. In this paper \mathscr{B} will be an infinite free Bose gas at inverse temperature $\beta = 1/kT$, without Bose–Einstein condensate. This system is described (see e.g. [BR, D1, D2, LP]) by a triple $\{\mathscr{H}_B, \Omega_B, H_B\}$, where \mathscr{H}_B is a Hilbert space, H_B a self-adjoint operator on \mathscr{H}_B , and Ω_B a unit vector in \mathscr{H}_B . Let us denote by $\omega(\mathbf{k})$ the energy of a boson with momentum $\mathbf{k} \in \mathbf{R}^3$. Then the equilibrium momentum distribution of bosons at inverse temperature β is given by Planck's law,

$$\rho(\mathbf{k}) = \frac{1}{\exp(\beta\omega(\mathbf{k})) - 1}$$

The space \mathscr{H}_B carries a representation of Weyl's algebra (CCR),

$$W_B(f) = \exp(i\varphi_B(f)), \qquad (1.1)$$

where the field operators $\varphi_B(f)$ satisfy, for $(1 + \omega^{-1/2})f \in L^2(\mathbf{R}^3)$, the relation

$$(\Omega_B, W_B(f)\Omega_B) = \exp\left[-\frac{\|f\|^2}{4} - \frac{1}{2}\int_{\mathbf{R}^3} |f(\mathbf{k})|^2 \rho(\mathbf{k}) d^3k\right] .$$
(1.2)