

Invariant Measures for the 2D-Defocusing Nonlinear Schrödinger Equation

Jean Bourgain

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 29 August 1994/in revised form: 23 May 1995

Abstract: Consider the 2D defocusing cubic NLS $iu_t + \Delta u - u|u|^2 = 0$ with Hamiltonian $\int (|\nabla \phi|^2 + \frac{1}{2}|\phi|^4)$. It is shown that the Gibbs measure constructed from the Wick ordered Hamiltonian, i.e. replacing $|\phi|^4$ by $: |\phi|^4$:, is an invariant measure for the appropriately modified equation $iu_t + \Delta u - [u|u|^2 - 2(\int |u|^2 dx)u] = 0$. There is a well defined flow on the support of the measure. In fact, it is shown that for almost all data ϕ the solution u, $u(0) = \phi$, satisfies $u(t) - e^{it\Delta}\phi \in C_{H^s}(\mathbb{R})$, for some s > 0. First a result local in time is established and next measure invariance considerations are used to extend the local result to a global one (cf. [B2]).

Introduction

Consider the Wick ordering $H_N = \int |\nabla u|^2 + \frac{1}{2} \int |u|^4 - 2a_N \int |u|^2 + a_N^2$ of the 2D-Hamiltonian $\int |\nabla u|^2 + \frac{1}{2} \int |u|^4$ corresponding to the 2D-defocusing cubic NLS.¹ It is shown that the solutions $u_N = u_N^{\infty}$ of the Cauchy problem

$$\begin{cases} (u_N)_t = i \frac{\partial H_N}{\partial u} \equiv \Delta u_N - P_N(u_N |u_N|^2) + 2a_N u_N = 0\\ u_N = P_N u_N, \ u_N(0) = \sum_{|n| \le N} \frac{g_n(\omega)}{|n|} e^{i\langle x, n \rangle} \end{cases}$$
(i)

converge weakly for all time, for almost all ω .² Here $\{g_n(\omega) | n \in \mathbb{Z}\}$ are independent L^2 -normalized complex Gaussians and P_N denotes the usual Dirichlet projection on the trigonometric system.

In fact, there is some s > 0, such that

$$u_N(t) - e^{2ic_N(\omega)t} \sum_{|n| < N} \frac{g_n(\omega)}{|n|} e^{i(\langle x, n \rangle + |n|^2 t)}, \qquad (ii)$$

¹ u is a complex function.

² We ignore for notational simplicity the problem of the zero Fourier mode in (i). This problem may be avoided replacing |n| by $(|n|^2 + \kappa)^{1/2}$, $\kappa > 0$ (redefining the Laplacian).