

Asymptotic Completeness for Long-Range Many-Particle Systems with Stark Effect. II

Tadayoshi Adachi¹, Hideo Tamura²

¹ Department of Mathematical Sciences, University of Tokyo, Meguro-ku, Tokyo 153, Japan

² Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan

Received: 29 August 1994/in revised form: 19 December 1994

Abstract: We prove the existence and the asymptotic completeness of the Dollardtype modified wave operators for many-particle Stark Hamiltonians with long-range potentials.

1. Introduction

The present paper is a continuation to the work [AT] where we have proved the asymptotic completeness of the Graf-type modified wave operators for many-particle Stark Hamiltonians with a class of long-range potentials. We here study the problem of the asymptotic completeness for many-particle Stark Hamiltonians with a larger class of long-range potentials.

We consider a system of N particles moving in a given constant electric field $\mathscr{E} \in \mathbf{R}^3$, $\mathscr{E} \neq 0$. Let m_j, e_j and $r_j \in \mathbf{R}^3$, $1 \leq j \leq N$, denote the mass, charge and position vector of the j^{th} particle, respectively. The N particles under consideration are supposed to interact with one another through the pair potentials $V_{jk}(r_j - r_k)$, $1 \leq j < k \leq N$. Then the total Hamiltonian for such a system is described by

$$\tilde{H} = \sum_{1 \leq j \leq N} \left\{ -\frac{1}{2m_j} \Delta_{r_j} - e_j \mathscr{E} \cdot r_j \right\} + V ,$$

where $\xi \cdot \eta = \sum_{j=1}^{3} \xi_j \eta_j$ for $\xi, \eta \in \mathbf{R}^3$ and the interaction V is given as the sum of the pair potentials

$$V = \sum_{1 \leq j < k \leq N} V_{jk}(r_j - r_k) \, .$$

As usual, we consider the Hamiltonian \tilde{H} in the center-of-mass frame. We introduce the metric $\langle r, \tilde{r} \rangle = \sum_{j=1}^{N} m_j r_j \cdot \tilde{r}_j$ for $r = (r_1, \dots, r_N)$ and $\tilde{r} = (\tilde{r}_1, \dots, \tilde{r}_N) \in \mathbf{R}^{3 \times N}$. We use the notation $|r| = \langle r, r \rangle^{1/2}$. Let X and X_{cm} be the configuration spaces