Commun. Math. Phys. 173, 513-558 (1995)

On the Quotients of Cubic Hecke Algebras

Louis Funar*

Institute of Mathematics, Bucharest, Romania, and Université de Paris-Sud, Orsay, France and (permanent address) UA 188 CNRS, Institut Fourier, BP 74, Mathèmatiques, Univ. Grenoble I, F-38402 Saint-Martin-D'Hères Cedex, France. E-mail: funar@fourier.grenet.fr

Received: 17 November 1993/in revised form: 3 January 1995

Abstract: Between the rank 3 quotients of cubic Hecke algebras there is essentially one of maximal dimension. We prove it has a unique Markov trace having values in a torsion module. Therefore the description of a Markov trace on the cubic Hecke algebra corresponding to $x^3 + 1$ and having the parameters (1, 1) is derived. Thus we obtain a numerical link invariant of finite degree, and define a whole sequence of 3^{rd} order Vassiliev invariants.

Contents

1.	Introduction	513
2.	The quotients of $H(Q,3)$	517
3.	Markov traces on $K_{\infty}(\gamma)$	524
4.	Link groups and invariants	528
5.	Graphical reduction of obstructions	533
A.	Appendix: The module $H(Q,3)$	549
Β.	Appendix: The quotient K_3	555

1. Introduction

The aim of this paper is to begin a systematic study of cubic Hecke algebras by analogy with the analysis carried out by Vaughan Jones (see [Jon87]) in the classical case of Hecke algebras. The motivation is to derive link invariants and Markov traces on the group algebra of the braid group.

We recall that Artin's braid group B_n in *n* strings is presented usually as

$$B_n = \langle b_1, b_2, \dots, b_{n-1} | b_i b_j = b_j b_i, |i-j| > 1, i, j = 1, n-1;$$

$$b_{i+1}b_ib_{i+1} = b_ib_{i+1}b_i, \ i = 1, n-2 \rangle.$$

^{*} Most of this work was done when the author prepared his PhD thesis at University of Paris-Sud and was partially supported by a BGF grant.