On the Quotients of Cubic Hecke Algebras

Louis Funar*
Institute of Mathematics, Bucharest, Romania, and Université de Paris-Sud, Orsay, France and (permanent address) UA 188 CNRS, Institut Fourier, BP 74, Mathèmatiques, Univ. Grenoble I, F-38402 Saint-Martin-D'Hères Cedex, France. E-mail: funar@fourier.grenet.fr

Received: 17 November 1993/in revised form: 3 January 1995

Abstract

Between the rank 3 quotients of cubic Hecke algebras there is essentially one of maximal dimension. We prove it has a unique Markov trace having values in a torsion module. Therefore the description of a Markov trace on the cubic Hecke algebra corresponding to $x^{3}+1$ and having the parameters $(1,1)$ is derived. Thus we obtain a numerical link invariant of finite degree, and define a whole sequence of $3^{\text {rd }}$ order Vassiliev invariants.

Contents

1. Introduction 513
2. The quotients of $H(Q, 3)$ 517
3. Markov traces on $K_{\infty}(\gamma)$ 524
4. Link groups and invariants 528
5. Graphical reduction of obstructions 533
A. Appendix: The module $H(Q, 3)$ 549
B. Appendix: The quotient K_{3} 555

1. Introduction

The aim of this paper is to begin a systematic study of cubic Hecke algebras by analogy with the analysis carried out by Vaughan Jones (see [Jon87]) in the classical case of Hecke algebras. The motivation is to derive link invariants and Markov traces on the group algebra of the braid group.

We recall that Artin's braid group B_{n} in n strings is presented usually as

$$
\begin{gathered}
B_{n}=\left\langle b_{1}, b_{2}, \ldots, b_{n-1}\right| b_{l} b_{j}=b_{j} b_{l},|i-j|>1, i, j=1, n-1 ; \\
\left.\quad b_{i+1} b_{l} b_{l+1}=b_{l} b_{l+1} b_{l}, i=1, n-2\right\rangle .
\end{gathered}
$$

[^0]
[^0]: * Most of this work was done when the author prepared his PhD thesis at University of Paris-Sud and was partially supported by a BGF grant.

