Homoclinic Orbits on Compact Hypersurfaces in $\mathbb{R}^{2 N}$, of Restricted Contact Type

Eric Séré
CEREMADE, Université Paris-Dauphine, Place de Lattre de Tassigny, F-75775 Paris Cedex 16, France

Received: 1 April 1994/in revised form: 1 November 1994

Abstract

Consider a smooth Hamiltonian system in $\mathbb{R}^{2 N}, \dot{x}=J H^{\prime}(x)$, the energy surface $\Sigma=\{x / H(x)=H(0)\}$ being compact, and 0 being a hyperbolic equilibrium. We assume, moreover, that $\Sigma \backslash\{0\}$ is of restricted contact type. These conditions are symplectically invariant. By a variational method, we prove the existence of an orbit homoclinic, i.e. non-constant and doubly asymptotic, to 0 .

I. Introduction

The goal of this work is to give a partial answer to a conjecture of Helmut Hofer, about homoclinic orbits in Hamiltonian systems (personal communication). Suppose that Σ is the zero energy surface of an autonomous Hamiltonian H in $\mathbb{R}^{2 N}$ having $x_{0} \in \Sigma$ as a hyperbolic equilibrium and no other equilibrium on Σ, and that $\Sigma \backslash\left\{x_{0}\right\}$ is of contact type. These conditions are symplectically invariant. The conjecture is that the Hamiltonian system

$$
\dot{x}=X_{H}, \quad X_{H}=J H^{\prime}(x), \quad J=\left(\begin{array}{cc}
0 & 1 \tag{1.1}\\
-1 & 0
\end{array}\right),
$$

has at least one solution $x(t)$ homoclinic to x_{0}, i.e. such that $x \neq x_{0}$, and $\lim _{|t| \rightarrow \infty} x(t)$ $=x_{0}$. It may be seen as an analogue for homoclinic orbits of the Weinstein conjecture in $\mathbb{R}^{2 N}$, which was solved by Viterbo in 1987 (see [W, V, H-Z]). In the present paper, we replace the contact condition by a restricted contact condition, less general but also symplectically invariant. We find a homoclinic orbit, as the critical point of the action functional associated to a suitably chosen Hamiltonian.

More precisely, we consider the following set of hypotheses on Σ :
($\mathscr{H} 1): \Sigma$ is a compact set. It may be defined as $\Sigma=\{x / H(x)=0\}$, where H is a smooth Hamiltonian defined on $\mathbb{R}^{2 N}$, whose differential H^{\prime} does not vanish on Σ, except at one point x_{0} that we identify with 0 after translation. Moreover, $A=H^{\prime \prime}(0)$ is non-degenerate.
$(\mathscr{H} 2)$: $J A$ is hyperbolic, i.e. $s p(J A) \cap i \mathbb{R}=\emptyset$.

