

Classification of Bicovariant Differential Calculi on Quantum Groups

Konrad Schmüdgen, Axel Schüler

Fakultät für Mathematik und Informatik und Naturwiss., Theoretisches Zentrum, Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany; E-mail schmuedgen@mathematik. uni-leipzig.d400.de

Received: 16 May 1994/in revised form: 20 December 1994

Abstract: Suppose that q is not a root of unity. We classify all bicovariant differential calculi of dimension greater than one on the quantum groups $GL_q(N)$, $O_q(N)$ and $Sp_q(N)$ for which the differentials du_j^i of the matrix entries u_j^i generate the left module of first order forms. Our first classification theorem asserts that there are precisely two one-parameter families of such calculi on $GL_q(N)$ for $N \ge 3$. In the limit $q \to 1$ only two of these calculi give the ordinary differential calculus on GL(N). Our second main theorem states that apart from finitely many q there exist precisely two differential calculi with these properties on $O_q(N)$ and $Sp_q(N)$ for $N \ge 4$. This strengthens the corresponding result proved in our previous paper [SS2]. There are four such calculi on $O_q(3)$. We introduce two new 4-dimensional bicovariant differential calculi on $O_q(3)$.

1. Introduction

In recent years the theory of quantum groups [D,J] has attracted considerable interest among both mathematicians and theoretical physicists, cf. [Mj]. Non-commutative differential calculus on quantum groups is a fundamental tool needed for many applications. For instance, it enters essentially the formulation of gauge theory with quantum groups, see e.g. [BM or C]. A general framework for bicovariant differential calculus on quantum groups has been provided by S.L. Woronowicz [W] following general ideas of A. Connes. In contrast to the classical differential geometry on Lie groups, there is no functorial method to obtain a unique bicovariant differential calculus on a given quantum group.

In this paper we classify all bicovariant differential calculi on the quantum groups $GL_q(N), O_q(N)$ and $Sp_q(N)$ under "natural" conditions. To be precise, we assume that q is not a root of unity, the differentials $du_j^i, i, j = 1, ..., N$, generate the left module of the first order forms and that the dimension of the calculus is greater than one. Here $u = (u_j^i)_{i,j=1,...,N}$ denotes the corresponding fundamental matrix.

The results of the present paper and its predecessor [SS2] provide a complete classification of all bicovariant differential calculi on the quantum groups $GL_q(N), SL_q(N), O_q(N)$ and $Sp_q(N)$ under the above assumptions. They show in