

On Algebraic Equations Satisfied by Hypergeometric Correlators in WZW Models. II.

Boris Feigin¹, Vadim Schechtman², Alexander Varchenko³

¹ L.D.Landau Institute for Theoretical Physics, Moscow, Russia

² Dept. of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA

³ Dept. of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Received: 30 April 1994/in revised form: 24 July 1994

Abstract: The paper contains an explicit description of genus 0 conformal block bundles for Wess–Zumino–Witten models of Conformal field theory. We prove that an earlier construction due to the second and the third authors gives a map of these bundles to certain de Rham cohomology bundles.

1. Introduction

1.1. Let g be a simple finite dimensional complex Lie algebra; let (,) be an invariant scalar product on g normalized in such a way that $(\theta, \theta) = 2$, θ being the highest root. Fix a positive integer k. Let L_1, \ldots, L_{n+1} be irreducible representations of g with highest weights $\Lambda_1, \ldots, \Lambda_{n+1}$. Suppose that $(\Lambda_i, \theta) \leq k$ for all *i*.

Consider a complex affine *n*-dimensional affine space \mathbb{A}^n with fixed coordinates $\mathbf{z} = (z_1, \ldots, z_n)$. Consider the space $X_n = \mathbb{A}^n - \bigcup_{i,j} \Delta_{ij}$, where $\Delta_{ij} = \{(z_1, \ldots, z_n) | z_i = z_j\}$ are diagonals. According to Conformal field theory, one can define a remarkable finite dimensional holomorphic vector bundle $\mathscr{C}(\Lambda_1, \ldots, \Lambda_{n+1})$ over X_n equipped with a flat connection (with logarithmic singularities along Δ_{ij}). (We imply that the last representation "lives" at the point $z_{n+1} = \infty$.)

More precisely, consider a trivial bundle over X_n with a fiber $(L_1 \otimes \cdots \otimes L_{n+1})_g$. Here we denote by M_g the space of coinvariants M/gM of a g-module M. Let us denote this bundle by $\mathscr{B}(\Lambda_1, \ldots, \Lambda_{n+1})$; it is equipped with a flat connection given by a system of Knizhnik–Zamolodchikov (KZ) differential equations, [KZ]. The bundle $\mathscr{C}(\Lambda_1, \ldots, \Lambda_{n+1})$ is a certain quotient of $\mathscr{B}(\Lambda_1, \ldots, \Lambda_{n+1})$ stable under KZ connection.

Classically this quotient is described in terms of certain coinvariants of the tensor product $\mathbf{L}_1 \otimes \cdots \otimes \mathbf{L}_{n+1}$, where \mathbf{L}_i is the irreducible representation of the affine Kac–Moody algebra \hat{g} corresponding to L_i and having the central charge k (see for example [KL] or Sect. 2 below). The first goal of the present paper is a precise

The second author was supported in part by the NSF grant DMS-9202280. The third author was supported in part by the NSF grant DMS-9203939.