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Abstract: We propose a quantum lattice version of B. Feigin and E. FrenkeΓs con-
structions, identifying the KdV differential polynomials with functions on a homoge-

neous space under the nilpotent part of s72. We construct an action of the nilpotent

part Uqn+ of Uqsl2 on their lattice counterparts, and embed the lattice variables in
a Uqn+-module, coinduced from a quantum version of the principal commutative
subalgebra, which is defined using the identification of Uqn+ with its dual algebra.

Introduction

In [FF1, FF2], B. Feigin and E. Frenkel propose a new approach to the generalized
KdV hierarchies. They construct an action of the nilpotent part n+ of the affine
algebra 0 on differential polynomials in the Miura fields, connected to the action
of screening operators. This enables them to consider these differential polynomials
as functions on a homogeneous space of n+, and to interpret in this way the KdV
flows. They also suggest that analogous constructions should hold for the quantum
KdV equations.

In this work we propose a quantum lattice version of part of these constructions.
Following ideas of lattice PF-algebras, we replace the differential polynomials by
an algebra of ^-commuting variables, set on a half-infinite line. The analogue of
the action of [FF1] is then an action of the nilpotent part Uqn+ of the quantum

aίfine algebra Uqsli. Recall that the homogeneous space occurring in [FF1] is'N+/A9

where N+ and A are the groups corresponding to n+ and its principal commutative
subalgebra a. A natural question is then what the analogue of a is in the quantum
situation.

We construct a quantum analogue of a in the following way: we use an isomor-

phism of Uqb+ with the coordinate ring C[B+]q ([Dr, LSS]) and transport in the first

algebra a twisted version of the well-known commutative family res dλλk trΓ(^).

We prove that this subalgebra of Uqb+ gives Ua for q = 1. This proof uses char-
acterizations of these algebras as centralizers of one element.


