

Non-Local Matrix Generalizations of W-Algebras

Adel Bilal*

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA

Received: 6 April 1994

Abstract: There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand–Dikii brackets, on the space of ordinary m^{th} -order lin-ear differential operators $L = -d^m + U_1 d^{m-1} + U_2 d^{m-2} + \cdots + U_m$. In this paper, I consider in detail the case where the U_k are $n \times n$ -matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold $U_1 = 0$. This reduction gives rise to matrix generalizations of (the classical version of) the non-linear W_m -algebras, called $V_{n,m}$ -algebras. The non-commutativity of the matrices leads to non-local terms in these $V_{n,m}$ -algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations W_k of the U_k can be formed that are $n \times n$ -matrices of conformally primary fields of spin k, in analogy with the scalar case n = 1. In general however, the $V_{m,n}$ -algebras have a much richer structure than the W_m -algebras as can be seen on the examples of the non-linear and non-local Poisson brackets $\{(U_2)_{ab}(\sigma), (U_2)_{cd}(\sigma')\}, \{(U_2)_{ab}(\sigma), (W_3)_{cd}(\sigma')\}$ and $\{(W_3)_{ab}(\sigma), (W_3)_{cd}(\sigma')\}$ which I work out explicitly for all m and n. A matrix Miura transformation is derived, mapping these complicated (second Gelfand-Dikii) brackets of the U_k to a set of much simpler Poisson brackets, providing the analogue of the free-field representation of the W_m -algebras.

1. Introduction

Since their discovery by Zamolodchikov [1], W-algebras have been an active field of investigation in theoretical and mathematical physics (see refs. [2, 3] for reviews). They are extensions of the conformal Virasoro algebra by higher spin fields W_k . The commutator of two such higher spin fields is a *local* expression involving *non-linear* differential polynomials of the W_l . W-algebras were found to arise naturally in the context of the 1 + 1-dimensional Toda field theories [4] where the higher spin fields

^{*} On leave of absence from Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France (unité propre du CNRS). e-mail: bilal@puhep 1.princeton.edu