Commun. Math. Phys. 169, 441-461 (1995)

Elliptic Quantum Many-Body Problem and Double Affine Knizhnik-Zamolodohikov Equation

Ivan Cherednik*

Department. of Math., UNC at Chapel Hill, Chapel Hill, N.C. 27599-3250, USA. E-mail: chered @ math. UNC. edu

Received : 17 March 1994/in revised form: 22 August 1994

Abstract: The elliptic-matrix quantum Olshanetsky–Perelomov problem is introduced for arbitrary root systems by means of an elliptic version of the Dunkl operators. Its equivalence with the double affine generalization of the Knizhnik–Zamolodchikov equation (in the induced representations) is established.

Section 0. Introduction	
Section 1. Double Hecke Algebras	
Section 2. Affine r-Matrices	
Section 3. Dunkl operators and KZ	
Section 4. Examples	

0. Introduction

We generalize the affine Knizhnik–Zamolodchikov equation from [Ch1,2,3] replacing the corresponding root systems by their affine counterparts. To explain the construction in the case of the root system of \mathbf{gl}_n , let us first introduce the **affine** Weyl group \mathbf{S}_n^a . It is the semi-direct product of the symmetric group \mathbf{S}_n and the lattice $A = \bigoplus_{i=1}^{n-1} \mathbf{Z} \varepsilon_{ii+1}$, where the first acts on the second permuting $\{\varepsilon_i, \varepsilon_{ij} = \varepsilon_i - \varepsilon_j\}$ naturally. This group is generated by the adjacent transpositions

$$s_i = (ii + 1), \ 1 \leq i < n, \ \text{and} \ s_0 = s_{n1}^{[1]}, \ \text{where} \ s_{ij}^{[k]} = (ij)(k\varepsilon_{ij}) \in \mathbf{S}_n^a$$

Setting

$$s_{ij}^{[k]}(b) = b - (\varepsilon_{ij}, b)(\varepsilon_{ij} + kc), \ s_{ij}^{[k]}(c) = c, \ b \in B = \bigoplus_{i=1}^{n} \mathbb{Z}\varepsilon_{i}, \qquad (0.1)$$

^{*} Partially supported by NSF grant number DMS-9301114 and UNC Research Counsel grant