

Symplectic Structure of the Moduli Space of Flat Connection on a Riemann Surface

A.Yu. Alekseev^{1, *}, A.Z. Malkin^{2, **}

Institute of Theoretical Physics, Uppsala University, Box 803 S-75108, Uppsala, Sweden.

Received: 2 December 1993/in revised form 6 April 1994

Abstract: We consider the canonical symplectic structure on the moduli space of flat \mathscr{G} -connections on a Riemann surface of genus g with n marked points. For \mathscr{G} being a semisimple Lie algebra we obtain an explicit efficient formula for this symplectic form and prove that it may be represented as a sum of n copies of Kirillov symplectic form on the orbit of dressing transformations in the Poisson-Lie group G^* and g copies of the symplectic structure on the Heisenberg double of the Poisson-Lie group G (the pair (G, G^*) corresponds to the Lie algebra \mathscr{G}).

1. Introduction

Being an interesting object of investigations, the moduli space of flat connections on a Riemann surface attracted the attention of many physicists and mathematicians when its relation to the Chern–Simons theory had been discovered [12]. By definition the moduli space (we shall often refer to the moduli space of flat connections in this way) is a quotient of the infinite dimensional space of flat connections over the infinite dimensional gauge group. It is remarkable that this quotient appears to be finite dimensional.

The moduli space \mathcal{M} carries a nondegenerate symplectic structure [3]. It implies the existence of a nondegenerate Poisson bracket on \mathcal{M} . Recently the combinatorial description of the moduli space has been suggested [5]. The main idea is to represent the same space \mathcal{M} as a quotient of the finite dimensional space \mathcal{P} over the finite dimensional group action. The Poisson structure has been defined on \mathcal{P} and proved to reproduce the canonical Poisson structure on the moduli space after reduction.

In the first part of this paper we give a combinatorial description of the canonical symplectic structure on \mathcal{M} (see Theorem 1, Sect. 3). This is a bit more natural

¹ On leave of absence from Steklov Mathematical Institute, Fontanka 27, St. Petersburg, Russia

^{*} Supported by Swedish Natural Science Research Council (NFR) under the contract F-FU 06821-304

² On leave of absence from St. Petersburg University

^{**} Supported in part by a Soros Foundation Grant awarded by the American Physical Society