Minor Identities for Quasi-Determinants and Quantum Determinants

Daniel Krob ${ }^{\mathbf{1}}$, Bernard Leclerc ${ }^{2}$
${ }^{1}$ Institut Blaise Pascal (LITP), Université Paris 7, 2, place Jussieu, 75251 Paris Cedex 05, France. E-mail: dk@litp.ibp.fr
${ }^{2}$ Institut Gaspard Monge, Université de Marne-la-Vallée, 93160 Noisy-le-Grand, France. E-mail: bl@litp.ibp.fr

Received: 20 October 1993/in revised form: 28 July 1994

Abstract

We present several identities involving quasi-minors of noncommutative generic matrices. These identities are specialized to quantum matrices, yielding q-analogues of various classical determinantal formulas.

1. Introduction

A common feature of the algebraic constructions which originated from the quantum inverse scattering method is the systematic use of matrices T with noncommutative entries, obeying a relation of the form

$$
R T_{1} T_{2}=T_{2} T_{1} R
$$

where the R-matrix is a solution of the Yang-Baxter equation [13, 20, 35]. The entries of the monodromy matrix T may be regarded as the generators of an associative algebra subject to the above relation. Many interesting examples of algebras arise in this way. Among them are $A_{q}\left(G L_{n}\right)$, the quantized algebra of functions on $G L_{n}$ [35], the quantized universal enveloping algebra $U_{q}\left(g l_{n}\right)$ [13, 20, 35], the Yangian $Y\left(g l_{n}\right)[13,33,27]$ and the quantized Yangian $Y_{q}\left(g l_{n}\right)$ [8]. In each of these cases, an appropriate concept of quantum determinant can be defined $[22,21,35]$ which is of fundamental importance in the description of the center of these algebras and their representation theory. For example the Drinfeld generators [14] of the Yangian $Y\left(g l_{n}\right)$ are given by some quantum minors of the T-matrix. These generators can be used to construct the Gelfand-Zetlin bases for certain irreducible representations of $Y\left(g l_{n}\right)$ [30,26]. Moreover, it is shown in [30] that the Gelfand-Zetlin formulas for $U_{q}\left(g l_{n}\right)$ follow from certain algebraic identities satisfied by quantum minors of the T-matrix corresponding to the quantized Yangian $Y_{q}\left(g l_{n}\right)$. Another application of quantum determinants is the construction of a q-deformation of the coordinate ring of the Grassmannian and the flag manifold, whose basis consists in products of quantum minors of the T-matrix associated with the algebra $A_{q}\left[G L_{n}\right]$ [23, 38]. In this case, the quadratic relations satisfied by quantum minors can be used to establish an analogue of the classical straightening formula [6]. These examples

