

Staggered Polarization of Vertex Models with $U_q(\widehat{sl}(n))$ -Symmetry

Yoshitaka Koyama

Research Institute for Mathematical sciences, Kyoto University, Kyoto 606, Japan

Received: 30 July 1993/in revised form: 18 November 1993

Abstract: In this paper we give an explicit formula for level 1 vertex operators related to $U_q(\widehat{sl}(n))$ as operators on the Fock spaces. We derive also their commutation relations. As an application we calculate with the vector representation of $U_q(\widehat{sl}(n))$, thereby extending the recent work on the staggered polarization of the XXZ-model.

1. Introduction

The Hamiltonian of the XXZ-model has $U_q(\widehat{sl}(2))$ -symmetry in the thermodynamic limit. Recently, on the basis of this fact, the XXZ-model was formulated in the framework of representation theory of $U_q(\widehat{sl}(2))$. Let us explain the scheme described in [1] briefly.

First we recall XXZ-model as it appears in physics. The space of states of the XXZ-model is the infinite tensor product $\cdots \otimes V \otimes V \otimes V \otimes \cdots$, where $V = \mathbf{C}v_+ \otimes \mathbf{C}v_-$ is the two-dimensional vector space. The XXZ-Hamiltonian is the following operator formally acting on the above space:

$$H_{XXZ} = -\frac{1}{2} \sum_{k \in \mathbb{Z}} \left(\sigma_k^x \sigma_{k+1}^x + \sigma_k^y \sigma_{k+1}^y + \frac{q+q^{-1}}{2} \sigma_k^z \sigma_{k+1}^z \right),$$

where σ^x , σ^y , σ^z are the Pauli matrices on V, σ^{α}_k acting on the kth component of $\cdots \otimes V \otimes V \otimes V \otimes \cdots$. Let $U'_q(\widehat{sl}(2))$ denote the subalgebra of $U_q(\widehat{sl}(2))$ with the grading operator d being dropped. It acts on V as follows:

$$e_1 \cdot v_- = v_+, \quad f_1 \cdot v_+ = v_-, \quad t_1 \cdot v_\pm = q^{\pm 1} v_\pm, \\ e_0 \cdot v_+ = v_-, \quad f_0 \cdot v_- = v_+, \quad t_0 \cdot v_\pm = q^{\mp} v_\pm.$$

 $U'_{q}(\widehat{sl}(2))$ acts on $\otimes V \otimes V \otimes V \otimes \cdots$ via the iterated coproduct $\Delta^{(\infty)}$.

$$\Delta^{(\infty)}(t_i) = \cdots \otimes t_i \otimes t_i \otimes t_i \otimes \cdots,$$

$$\Delta^{(\infty)}(e_i) = \sum \cdots \otimes t_i \otimes t_i \otimes e_i \otimes 1 \otimes 1 \otimes \cdots,$$

$$\Delta^{(\infty)}(f_i) = \sum \cdots \otimes 1 \otimes 1 \otimes f_i \otimes t_i^{-1} \otimes t_i^{-1} \otimes \cdots.$$