Commun. Math. Phys. 163, 257-291 (1994)

A Symmetric Family of Yang–Mills Fields

Lorenzo Sadun

Department of Mathematics, University of Texas, Austin, Texas 78712, USA E-mail address: sadun@math.utexas.edu

Received: 5 February 1993/in revised form: 29 October 1993

Abstract: We examine a family of finite energy SO(3) Yang–Mills connections over S^4 , indexed by two real parameters. This family includes both smooth connections (when both parameters are odd integers), and connections with a holonomy singularity around 1 or 2 copies of RP^2 . These singular YM connections interpolate between the smooth solutions. Depending on the parameters, the curvature may be self-dual, anti-self-dual, or neither. For the (anti)self-dual connections, we compute the formal dimension of the moduli space. For the non-self-dual connections we examine the second variation of the Yang–Mills functional, and count the negative and zero eigenvalues. Each component of the non-self-dual moduli space appears to consist only of conformal copies of a single solution.

1. Introduction and Statement of Results

1.1 Main Results. Until recently, the phrase "Yang-Mills theory in four dimensions" essentially meant the study of smooth solutions to the (anti) self-duality equations

$$*F = \pm F , \qquad (1.1)$$

where F is the curvature of a connection A, usually with gauge group SU(2) or SO(3), on a bundle over a Riemannian 4-manifold M, which may or may not have a boundary. The moduli space of such solutions, up to gauge invariance, gives topological information about M, a fact which was exploited by Donaldson and others to make tremendous progress in the topology of 4-manifolds (see [DK] for an overview).

In recent years the field has expanded in two directions. First, there is the study of nonself-dual Yang–Mills connections. These are solutions to the full Yang–Mills equations,

$$d_A^* F = 0 , (1.2)$$

This work was partially supported by an NSF Mathematical Sciences Postdoctoral Fellowship