Commun. Math. Phys. 163, 173-184 (1994)

On Algebraic Equations Satisfied by Hypergeometric Correlators in WZW Models. I.

Boris Feigin¹, Vadim Schechtman,^{2, \star} and Alexander Varchenko^{3, \star}

¹ Landau Institute for Theoretical Physics, Moscow, Russia

² Dept. of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA

³ Dept. of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Received: 15 July 1993

Abstract. It is proven that integral expressions for conformal correlators in sl(2) WZW model found in [SV] satisfy certain natural algebraic equations. This implies that the above integrals really take their values in spaces of conformal blocks.

Contents

	Introduction								
2. S	Spaces of Conformal Blocks	 	 						. 174
2	2.1 Representations of g	 	 						. 175
2	2.2 Representations of $\hat{\mathfrak{g}}$. 175
2	2.3 Spaces of Coinvariants	 	 						. 176
3. S	Sending to Differential Forms	 	 						. 179
3	3.1 Configurational Arrangements	 	 	 					. 179
3	3.2 Resonances at Infinity	 	 						. 180
3	3.3 The Map to Differential Forms	 	 						. 181
3	3.4 Truncation	 	 	 •					. 182
3	3.5 Proof of Theorem 3.4.1	 	 						. 182
Refe	ferences	 	 						. 184

1. Introduction

Let \mathbb{P}^1 be a complex projective line with a fixed coordinate z, $\mathbb{A}^1 = \mathbb{P}^1 - \{\infty\}$. Let \mathfrak{g} be a complex simple Lie algebra with a fixed invariant scalar product (,) defining the symmetric invariant tensor $\Omega \in \mathfrak{g} \otimes \mathfrak{g}$, L_1, \ldots, L_{n+1} its irreducible representations. Set

$$W = (L_1 \otimes L_2 \otimes \cdots \otimes L_{n+1})_{\mathfrak{q}}.$$

^{*} The second author was supported in part by the NSF grant DMS-9202280. The third author was supported in part by the NSF grant DMS-9203939