Effective Action in Spherical Domains

J. S. Dowker
Department of Theoretical Physics, The University of Manchester, Manchester, England

Received: 28 July 1993

Abstract

The effective action on an orbifolded sphere is computed for minimally coupled scalar fields. The results are presented in terms of derivatives of Barnes ζ functions and it is shown how these may be evaluated. Numerical values are shown. An analytical, heat-kernel derivation of the Cesàro-Fedorov formula for the number of symmetry planes of a regular solid is also presented.

1. Introduction

In an earlier work [1] we have shown that the ζ-function, $\zeta_{\Gamma}(s)$, on orbifold-factored spheres, S^{d} / Γ, for a conformally coupled scalar field, is given by a Barnes ζ-function, [2], $\zeta_{d}(s, a \mid \mathbf{d})$, where the d_{i} are the degrees associated with the tiling group Γ. The free-field Casimir energy on the space-time $\mathbb{R} \times S^{d} / \Gamma$ was given as the value of the ζ-function at a negative integer which evaluated to a generalised Bernoulli function. In the present work we wish to consider the effective action on orbifolds S^{d} / Γ which this time are to be looked upon as Euclidean space-times. In particular we will discuss $d=2$ and $d=3$, concentrating on the former.

The simplifying assumption in our previous work was that of conformal coupling on $\mathbb{R} \times S^{d} / \Gamma$. This made the relevant eigenvalues perfect squares and allowed us to use known generating functions to incorporate the degeneracies. From the point of view of field theories on the space-times S^{d} / Γ, retaining this assumption would be rather artificial. A more appropriate choice would be minimal coupling, or possibly conformal coupling, on S^{d} / Γ. (These coincide for $d=2$.)

The quantities in which we are interested are $\zeta_{\Gamma}^{\prime}(0)$ and $\zeta_{\Gamma}(0)$. The latter determines the divergence in the effective action and the former is, up to a factor and a finite addition, the renormalised effective action (i.e. half the logarithm of the functional determinant).

