An Explicit Description of the Global Attractor of the Damped and Driven Sine-Gordon Equation

Communications in Mathematical Physics © Springer-Verlag 1994

Björn Birnir^{1,2*}, Rainer Grauer^{1, **}

¹ Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

² The University of Iceland, Science Institute, 3 Dunhaga, Reykjavik 107, Iceland

Received: 17. July 1992/in revised form: 4 October 1993

Abstract: We prove that the size of the finite-dimensional attractor of the damped and driven sine-Gordon equation stays small as the damping and driving amplitude become small. A decomposition of finite-dimensional attractors in Banach space is found, into a part \mathscr{B} that attracts all of phase space, except sets whose finitedimensional projections have Lebesgue measure zero, and a part \mathscr{C} that only attracts sets whose finite-dimensional projections have Lebesgue measure zero. We describe the components of the \mathscr{B} -attractor and \mathscr{C} , which is called the "hyperbolic" structure, for the damped and driven sine-Gordon equation. \mathscr{B} is low-dimensional but the dimension of \mathscr{C} , which is associated with transients, is much larger. We verify numerically that this is a complete description of the attractor for small enough damping and driving parameters and describe the bifurcations of the \mathscr{B} -attractor in this small parameter region.

Contents

1. Introduction																						539
2. Energy Estimates																						542
3. The Attractor of the Poincaré Map					•																•	551
4. Periodic Orbits					•		•	•						•		•			•			559
5. The B-Attractor and the Hyperbol	c S	tru	ctu	re		•	•						•			•		•				572
Appendix. The Center Manifold of th	e F	ap	per	s	•	•	·	•		•			•	•	•				•			583
References			•	•	•	•	•	·	•	•	•	•	•	·	•	·	•	•	•	•	•	588

1. Introduction

Dissipative nonlinear wave equations on a finite domain possess finite-dimensional attractors and if the equations are driven by an autonomous force a complete

^{*} Partially supported by NSF grants DMS89-05770 and DMS89-03012

^{**} Partially supported by an INCOR grant and a grant from the German Science Foundation