Commun. Math. Phys. 162, 529-537 (1994)

Positive Lyapunov Exponents for a Class of Ergodic Schrödinger Operators

Steve Surace

Drew University, Department of Mathematics, Madison, New Jersey 07940, USA

Received: 1 June 1993/in revised form: 10 August 1993

Abstract: We present a simple method to estimate the Lyapunov exponent $\gamma(E)$ for the system

$$-(\psi_{j+1} + \psi_{j-1}) + v_j(\omega)\psi_j = E\psi_j$$
,

where $\{v_j(\omega)\}_{\omega \in \Omega}$ is an ergodic family of potentials defined for $j \in \mathbb{Z}$. We assume that there is a constant $\zeta > 2$ and large positive integers l, L such that for almost every ω and every E there is an infinite sequence of disjoint intervals $J_n \subset \mathbb{Z}$ with the following properties:

- 1) The length of each interval is larger than 2l.
- 2) The distance between any two adjacent intervals is less than L.
- 3) $|v_j(\omega) E| \ge \zeta$ for $j \in \bigcup_n J_n$.

Under these conditions we prove that

$$\max\{E: \gamma(E) = 0\} \leq Be^{-\beta l/6}.$$

where β and B are positive constants and "meas" refers to Lebesgue measure.

I. Introduction

In this paper we obtain the following result:

Theorem. Consider the finite difference Schrödinger equation

$$-(\psi_{j+1} + \psi_{j-1}) + v_j(\omega)\psi_j = E\psi_j .$$
(1)

where $\{v_j(\omega)\}_{\omega \in \Omega}$ is an ergodic family of potentials defined for $j \in \mathbb{Z}$. Let $\gamma(E)$ be the Lyapunov exponent for (1) and let $A \equiv \{E \in \mathbb{R} : \gamma(E) = 0\}$. Suppose that there is a constant $\zeta > 2$ and large positive integers l, L such that for almost every ω and every E there is an infinite sequence of disjoint intervals

$$J_n = [a_n - l_n, a_n + l_n] \subset \mathbb{Z}$$