Commun. Math. Phys. 162, 353-369 (1994)

Erdős-Rényi Laws for Gibbs Measures

Francis M. Comets*

Université Paris 7, UFR de Mathématiques, case 7012, 2, place Jussieu, F-75251 Paris Cédex 05, France, Email: comets@mathp7.jussieu.fr, fax: 33-1-44276935

Received: 23 December 1992/in revised form: 5 October 1993

Abstract: Can one detect a phase transition from a single, large sample of a Gibbs measure? What information does one get on the other Gibbs distributions with the same potential? We approach these questions via Erdős-Rényi laws. In particular we prove almost-sure limit theorems for sets of empirical distributions of sub-samples of the given one: for suitable sub-samples size this set converges to the set of stationary Gibbs measures. Moreover we formulate Erdős-Rényi laws for general families of random variables with suitable large deviation principles.

I. Introduction

On a single realization of a random field on the lattice observed in a large box, one can see smaller windows where the sample shows a large deviation from its typical behavior. The smallest the size of the windows, the most unlikely the deviation. This is the underlying idea of Erdős-Rényi laws, which are well known from statisticians for independent identically distributed random variables.

In this paper, we prove Erdős-Renyi type laws for Gibbs distributions, with a particular emphasis on (first-order) phase transition. Let us illustrate our results in the case of a real valued, finite range interaction Gibbs random field P. Consider the average spin $M_A(\omega) = \frac{1}{|A|} \sum_{i \in A} \omega_i$ of the sample $\omega = (\omega_i)_i$ on a cubic box A with cardinality |A|. It is well known that for large A, $P\{M_A \ge x\}$ behaves approximately like $\exp\{-|A|\lambda(x)\}$, with $\lambda(x) > 0$ if x is larger than some number. Let us observe the sample on a box A; for cubic windows $A' \subset A$ the Erdős-Rényi statistics $M_{A,A'}^+$ is the largest average spin $M_{i+A'}$ among all the translates i + A' of A' which are included in A. Then, for all such x the Erdős-Rényi law proved in this paper states that

$$M^+_{\Lambda,\Lambda'} \longrightarrow x \quad P\text{-a.s.}$$
 (1.1)

^{*} URA CNRS 756 (Centre de Mathématiques Appliquées, Ecole Polytechnique) et 1321 (Statistique et Modèles Aléatoires, Université Paris 7)