Polymers in a Weak Random Potential in Dimension

Communications in Mathematical Physics © Springer-Verlag 1994

D. Iagolitzer¹, J. Magnen²

¹ Service de Physique Théorique, C.E. Saclay, F-91191 Gif-Sur-Yvette, France
² Centre de Physique Théorique, CNRS, UPR 14, Ecole Polytechnique,

Four: Rigorous Renormalization Group Analysis

F-91128 Palaiseau Cedex, France

Received: 5 August 1992/in revised form: 7 July 1993

Abstract: Correlation functions of the Edwards model of polymers at weak coupling are defined and studied at the critical point, in dimension four, by a rigorous renormalization group method which validates, at any order, perturbative renormalization group results on their behaviour at large distances. Remainders are controlled by a new argument which enlarges the use of methods of constructive field theory to models of statistical physics.

Contents

1.	Introduction	35
2.	The Model and Results	38
3.	Infinite-volume Limit in the Theory with IR and UV Cut-Off) 1
4.	The Infrared limit: Introduction) 6
5.	Phase-Space Expansion: Preliminaries)()
6.	Renormalization)5
7	Resummation of Low Momentum Contributions)8
8.	Bounds, Convergence, Large Distance Behaviour	11
Re	ferences	21

1. Introduction

Edwards model [1] of polymers in a random potential and the alternative perturbatively equivalent [2, 4] Edwards model [2] of (possibly weakly) self-avoiding polymers play an important role in polymer theory. From the viewpoint of perturbative field theory, they coincide [3, 4] with φ^4 "at N = 0 components" (i.e. N is fixed at zero in perturbative formulae which a priori apply to strictly positive integer values of N). At the critical point (i.e. for theories with arbitrary size of the polymers) the basic

A large part of this work has also included the collaboration of D Arnaudon