The Non-Linear Stability of Front Solutions for Parabolic Partial Differential Equations

Jean-Pierre Eckmann, ${ }^{1,2}$ C. Eugene Wayne ${ }^{3}$
${ }^{1}$ Dépt. de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland
${ }^{2}$ Section de Mathématiques, Université de Genève, CH-1211 Genève 4, Switzerland
${ }^{3}$ Dept. of Mathematics, Penn. State, University Park, PA 16803, USA

Received: 1 April 1993 / in revised form: 27 April 1993

Abstract

For the Ginzburg-Landau equation and similar reaction-diffusion equations on the line, we show convergence of complex perturbations of front solutions towards the front solutions, by exhibiting a coercive functional.

1. Introduction and Statement of Results

In this paper, we study partial differential equations of the form

$$
\begin{equation*}
\partial_{t} u=\partial_{x}^{2} u+u F(|u|), \tag{1.1}
\end{equation*}
$$

$u=u(x, t)$, with $t>0, x \in \mathbf{R}$, and u taking complex values. We assume $F(0)>0$, $F(a)=0$, for $a>0$, and without loss of generality we consider only the case $a=1$. A front solution of (1.1) is a solution u of the form $u(x, t)=f(x-c t) \in \mathbf{R}, c>0$, with $\lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow-\infty} f(x)=1$. The most studied equation of this type is the Ginzburg-Landau (GL) equation (or Newell-Whitehead equation) where $F(\zeta)=1-\zeta^{2}$.

Our aim is to study the stability of such fronts for initial data u_{0} which are small, complex perturbations of the front f of the form

$$
\begin{equation*}
u_{0}(x)=f(x)\left(1+r_{0}(x)\right) e^{\imath \varphi_{0}(x)} \tag{1.2}
\end{equation*}
$$

We will also write

$$
\begin{equation*}
u(x, t)=f(x-c t)\left(1+r_{t}(x-c t)\right) e^{i \varphi_{t}(x-c t)} \tag{1.3}
\end{equation*}
$$

and it is always tacitly assumed that $u(x, t)$ solves Eq. (1.1). Note that both r and φ are measured in the frame in which the front itself moves. Complex perturbations of the real front solutions occur naturally in "amplitude equations" such as in the reduction from the Swift-Hohenberg equation to the Ginzburg-Landau equation, see, e.g., [CE1].

We will give sufficient conditions on F and c to insure that solutions of Eq. (1.1) with initial conditions as in Eq. (1.2) converge to the front solution, provided r_{0}

