Superderivations of C^* -Algebras Implemented by Symmetric Operators

Edward Kissin

School of Mathematical Sciences, University of North London, 166-220 Holloway Road, London N7 8DB, United Kingdom

Received: 3 March 1993

Abstract: The paper studies unbounded symmetric and dissipative implementations (S, G) of *-superderivations δ of C^* -algebras \mathfrak{U} . It associates with them representations π_S^{δ} of the domains $D(\delta)$ of δ on the deficiency spaces N(S) of the symmetric operators S. A link is obtained between the deficiency indices $n_{\pm}(S)$ of S and the dimensions of irreducible representations of \mathfrak{U} . For the case when (S, G) is a maximal implementation and $\max(n_{\pm}(S)) < \infty$, some conditions are given for the representation π_s^{δ} to be semisimple and to extend to a bounded representation of \mathfrak{U} .

1. Introduction

Let \mathfrak{U} be a C^* -algebra and ϱ be a *-representation of \mathfrak{U} on a Hilbert space \mathfrak{H} . Let δ be a linear closed mapping from a dense *-subalgebra $D(\delta)$ of \mathfrak{U} into the algebra $B(\mathfrak{H})$ of all bounded operators on \mathfrak{H} such that, for $A \in D(\delta)$,

(i) $\delta(AB) = \delta(A) \varrho(B) + \varrho(\varphi(A)) \delta(B)$,

(ii) $\delta(\varphi(A)^*) = \delta(A)^*$,

where φ is an automorphism of $D(\delta)$. Then δ a closed *-superderivation of \mathfrak{U} relative to the pair (ϱ, φ) . A pair (S, G), where S is a densely defined closed operator on \mathfrak{H} , S* is its adjoint and G is a bounded operator on \mathfrak{H} such that $G^{-1} \in B(\mathfrak{H})$, implements δ if, for $A \in D(\delta)$,

$$\varrho(\varphi(A)) = G^{-1}\varrho(A)G, \qquad (1)$$

$$GD(S) = D(S)$$
 and $GD(S^*) = D(S^*)$, (2)

$$\varrho(A)D(S) \subseteq D(S)$$
 and $\delta(A)|_{D(S)} = i(S\varrho(A) - G^{-1}\varrho(A)GS)|_{D(S)}$. (3)

If a pair (T, G) also implements δ and T extends S, then (T, G) is a δ -extension of (S, G). If S is symmetric and G is selfadjoint, (S, G) is a symmetric implementation of δ . If (S, G) has no symmetric δ -extensions, it is a maximal symmetric implementation of δ .