# Beta Function and Schwinger Functions for a Many Fermions System in One Dimension. Anomaly of the Fermi Surface 

G. Benfatto ${ }^{1}$, G. Gallavotti ${ }^{2,3}$, A. Procacci ${ }^{2}$, B. Scoppola ${ }^{4}$<br>1 Dipartimento di Matematica, Università di Roma "Tor Vergata," I-00133 Roma, Italy<br>${ }^{2}$ Dipartimento di Fisica, Università di Roma "La Sapienza," P. Moro 5, I-00185 Roma, Italy<br>${ }^{3}$ Mathematics Dept., Hill Center, Rutgers University, New Brunswick, NJ 08903, USA<br>4 Dipartimento di Matematica, Università di Roma "La Sapienza," I-00185 Roma, Italy

Received: 25 February 1993/in revised form: 28 April 1993


#### Abstract

We present a rigorous discussion of the analyticity properties of the beta function and of the effective potential for the theory of the ground state of a one dimensional system of many spinless fermions. We show that their analyticity domain as a function of the running couplings is a polydisk with positive radius bounded below, uniformly in all the cut offs (infrared and ultraviolet) necessary to give a meaning to the formal Schwinger functions. We also prove the vanishing of the scale independent part of the beta function showing that this implies the analyticity of the effective potential and of the Schwinger functions in terms of the bare coupling. Finally we show that the pair Schwinger function has an anomalous long distance behaviour.


## Contents

1 Introduction ..... 94
2 Functional Integral Representation of Fermionic Correlation Functions ..... 98
3 Ultraviolet Limit for the Effective Potential ..... 106
4 The Effective Potential in the Infrared Region. Failure of Normal Scaling ..... 121
5. The Effective Potential in the Infrared Region. Running Couplings and Anomalous Scaling ..... 130
6 The Two Point Schwinger Function ..... 146
7. The Vanishing of the Beta Function and Completion of the Theory of Spinless Fermi Systems ..... 151
Appendix 1. Bounds on the Free Propagators ..... 157
Appendix 2. The Gramm-Hadamard (and Related) Inequalities ..... 159
Appendix 3 The Bound (5.60) ..... 164
Appendix 4. Simplified Beta Functional ..... 169
References ..... 170

