Commun. Math. Phys. 159, 29-49 (1994)

Representations of Quantum so(8) and Related Quantum Algebras

Vyjayanthi Chari^{1, *}, Andrew Pressley¹

¹ Department of Mathematics, University of California, Riverside, CA 92521, U.S.A.

² Department of Mathematics, King's College, Strand, London WC2R 2LS, England, U.K.

Received: 30 November 1992/in revised form: 2 June 1993

Abstract: We study irreducible representations of the quantum group $U_{\varepsilon}(so(8))$ when $\varepsilon \in \mathbb{C}^*$ is a primitive l^{th} root of unity. By a theorem of De Concini and Kac, there is a finite number of such representations associated to each point of a complex algebraic variety of dimension 28 and the generic representation has dimension l^{12} .

We give explicit constructions of essentially all the irreducible representations whose dimension is divisible by l^8 . In addition, we construct all cyclic representations of minimal dimension. This minimal dimension is l^5 , in accordance with a conjecture of De Concini, Kac and Procesi.

1. Introduction

If g is finite-dimensional complex simple Lie algebra, there is a well-known family $\{\overline{U}_q(\underline{g}); q \in \mathbb{C}^{\times}\}$ of Hopf algebras over \mathbb{C} which "tend" in a precise sense, to the universal enveloping algebra of g as q tends to 1. The algebra $U_q(\underline{g})$ is generated by elements $e_i, f_i, k_i^{\pm 1}, i = 1, \ldots, n = rk(\underline{g})$, satisfying certain relations which may be found in Sect. 2.

If q is not a root of unity, the representation theory of $U_q(\underline{g})$ is the "same" as that of \underline{g} [8]. On the other hand, if $q = \varepsilon$ is an l^{th} root of unity, where we assume that l is odd and greater than 1, there are finitely many finite-dimensional irreducible $U_{\varepsilon}(\underline{g})$ -modules associated to every point of a certain complex algebraic veriety of dimension $m = \dim(\underline{g})$ [5]. All such representations have dimension at most $l^{(m-n)/2}$. Although the results of [5] give an adequate parametrization of the set of irreducible representations of $U_{\varepsilon}(\underline{g})$, they do not give any explicit description of the representations themselves (except in the sl_2 case). It is of interest to give such descriptions, partly to test certain conjectures made in [5 and 6], and also because of certain analogies between the representation theory of $U_{\varepsilon}(\underline{g})$ and that of \underline{g} over

^{*} Partially supported by the NSF, DMS-9115984