W-Algebras and Superalgebras from Constrained WZW Models: A Group Theoretical Classification

L. Frappat¹, E. Ragoucy¹ and P. Sorba^{1, 2}

1 Laboratoire de Physique Théorique ENSLAPP*, Groupe d'Annecy, LAPP, Chemin de Bellevue BP 110, F-74941 Annecy-le-Vieux Cedex, France 2 Groupe de Lyon, ENS Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France

Received September 4, 1992; in revised form January 12, 1993

Abstract. We present a classification of W algebras and superalgebras arising in Abelian as well as non Abelian Toda theories. Each model, obtained from a constrained WZW action, is related with an Sl(2) subalgebra (resp. OSp(1|2) superalgebra) of a simple Lie algebra (resp. superalgebra) \mathscr{G} . However, the determination of an $U(1)_Y$ factor, commuting with Sl(2) (resp. OSp(1|2)), appears, when it exists, particularly useful to characterize the corresponding W algebra. The (super) conformal spin contents of each W (super) algebra is performed. The class of all the superconformal algebras (i.e. with conformal spins $s \leq 2$) is easily obtained as a byproduct of our general results.

Contents

	I. Introduction	·	•	•	501
	2. W Algebras and (Half-)Integral Gradings				502
	2.1. W Algebras in Toda Theories				502
	2.2. Properties of (Half) Integral Gradients				504
	2.3. Primary Fields of W Algebras				506
	2.4. Classification of Constrained WZW Models	•	•	•	507
I.	Algebras Built on Lie Algebras	•			507
	3. The Different $Sl(2)$ Subalgebras in a Simple Lie Algebra ${\mathscr G}$	2	•		507
	4. $Sl(2)$ Decomposition of Simple Lie Algebras 4.1. The \mathscr{S} Fundamental Representation with Respect to a $Sl(2)$		•		508
	Subalgebra				509
	$4.1.1. Sl(n) Case \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$				509

^{*} URA 14-36 du CNRS, associée à l'E.N.S. de Lyon, et au L.A.P.P. (IN2P3-CNRS)