Strong-Electric-Field Eigenvalue Asymptotics for the Perturbed Magnetic Schrödinger Operator

George D. Raikov

Section of Mathematical Physics, Institute of Mathematics, Bulgarian Academy of Sciences, P.O. Box 373, BG-1090 Sofia, Bulgaria

Received September 22, 1992; in revised form February 10, 1993

Abstract. We consider the Schrödinger operator with constant full-rank magnetic field, perturbed by an electric potential which decays at infinity, and has a constant sign. We study the asymptotic behaviour for large values of the electric-field coupling constant of the eigenvalues situated in the gaps of the essential spectrum of the unperturbed operator.

0. Introduction

On $C_0^{\infty}(\mathbb{R}^m)$ define the Schrödinger operator

$$H_a^{\pm} := (i\nabla + A)^2 \mp gV$$
.

Here $A : \mathbb{R}^m \to \mathbb{R}^m$ is the magnetic potential, $V : \mathbb{R}^m \to \mathbb{R}_+$ is the electric potential, and g > 0 is the electric-field coupling constant. Our further assumptions about Aand V will imply, in particular, the essential selfadjointness of the operator H_g^{\pm} , so that in the sequel H_g^{\pm} will denote the operator selfadjoint in $L^2(\mathbb{R}^m)$. We assume that the entries

$$B_{ij} = \partial_{X_i} A_j - \partial_{X_j} A_i, \quad i, j = 1, \dots, m,$$

of the magnetic-field tensor $B = \{B_{ij}\}_{i,j=1}^m$ are constant in X. Moreover, we assume

$$\operatorname{rank} B = m \,. \tag{0.1}$$

Note that the condition (0.1) may hold only if the dimension m is even, i.e. m = 2d, $d \in \mathbb{Z}$, $d \ge 1$. Let $b_1 \ge \cdots \ge b_d > 0$ be such numbers that the eigenvalues of the skew-symmetric matrix B are equal together with the multiplicities to the imaginary

^{*} Partly supported by the Bulgarian Science Foundation under contract MM 33/91