© Springer-Verlag 1993

Navier and Stokes Meet the Wavelet

Paul Federbush*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received July 8, 1991

Abstract. We work in the space $\mathscr{F} = \mathscr{F}_{\varepsilon}$ of divergence-free measurable vector fields on \mathbb{R}^3 complete in the norm $\| \|'$, where

$$(\|v\|')^2 = \sup_{\substack{x \\ R \le 1}} \left(\frac{1}{R}\right)^{1+\varepsilon} \int_{B(x,R)} v^2(y) d^3y$$

for some fixed $\varepsilon > 0$. B(x,R) is the ball of radius R centered at x. Given an initial velocity distribution $\vec{v}(0)$ in \mathscr{F} , we find $\vec{v}(x,t)$ for $0 \le t \le T = T(\|v(0)\|')$, T > 0, such that $\vec{v}(x,t)$ is the unique strong solution of the Navier–Stokes equations, in a suitable sense.

We expand $\vec{v}'(x, t) = \vec{v}(x, t) - \vec{v}(x, 0)$ in terms of divergence-free vector wavelets $\{\vec{u}_{\alpha}\}\$

$$\vec{v}'(x, t) = \sum_{\alpha} c_{\alpha}(t) \vec{u}_{\alpha}(x) .$$

The Navier-Stokes equations become an infinite set of integral equations for the $c_{\alpha}(t)$. In an appropriate space one realizes the $c_{\alpha}(t)$ satisfying the equations as the fixed point of a contraction mapping. The thus unique solution is the strong solution mentioned above.

Loosely Speaking. Given $\vec{v}(0)$ of finite $\| \|'$ norm, there is one and only one $\vec{v}(t)$ of bounded $\| \|'$ norm on [0, T] with $T = T(\| v(0) \|') > 0$, that satisfies both

a) the Navier-Stokes equations

and

b)
$$\lim_{R \to \infty} \frac{1}{R^3} \int_{B(0,R)} [\vec{v}(x,t) - \vec{v}(x,0)] = \vec{0}$$
, all t .

^{*} Supported in part by the National Science Foundation under Grant No. PHY-90-02815