Commun. Math. Phys. 154, 471-508 (1993)

Communications in Mathematical Physics © Springer-Verlag 1993

New Jacobi-like Identities for Z_K Parafermion Characters

Philip C. Argyres^{1*}, Keith R. Dienes^{2**}, and S.-H. Henry Tye¹

 ¹ Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853-5001, USA
² Dept. of Physics, McGill University, E. Rutherford Building, 3600 University St., Montréal, P.Q. H3A-2T8, Canada

Received April 10, 1992

Abstract. We state and prove various new identities involving the \mathbb{Z}_K parafermion characters (or level-K string functions) c_n^l for the cases K = 4, K = 8, and K = 16. These identities fall into three classes: identities in the first class are generalizations of the famous Jacobi \mathcal{P} -function identity (which is the K = 2 special case), identities in another class relate the level K > 2 characters to the Dedekind η -functions. These identities play a crucial role in the interpretation of fractional superstring spectra by indicating spacetime supersymmetry and aiding in the identification of the spacetime spin and statistics of fractional superstring states.

1. Introduction

 Z_K parafermion theories [1] have recently found a new application as the basic worldsheet building blocks of fractional superstrings [2]. Fractional superstrings are generalizations of the traditional superstring and heterotic string, and are constructed essentially by replacing the worldsheet supersymmetry of the superstring with a *fractional* supersymmetry (parametrized by an integer K) which relates worldsheet bosons not to fermions but to Z_K parafermions. It is found that the critical spacetime dimensions of such string theories are less than ten, and are in fact given by the simple formula

$$D_c = 2 + \frac{16}{K}, \quad K \ge 2.$$
 (1.1)

The special case K = 2 reproduces the usual superstring and heterotic string with critical dimension $D_c = 10$, and the cases with K = 4, K = 8, and K = 16 yield new

^{*} E-mail address: pca@strange.tn.cornell.edu

^{**} E.-mail address: dien@hep.physics.mcgill.ca