

Distribution of the Error Term for the Number of Lattice Points Inside a Shifted Circle

Pavel M. Bleher^{1*}, Zheming Cheng², Freeman J. Dyson¹, and Joel L. Lebowitz^{2, 3}

¹ School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

² Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

³ Department of Physics, Rutgers University, New Brunswick, NJ 08903, USA

Received February 24, 1992; in revised form November 3, 1992

Abstract. We investigate the fluctuations in $N_{\alpha}(R)$, the number of lattice points $n \in \mathbb{Z}^2$ inside a circle of radius R centered at a fixed point $\alpha \in [0, 1)^2$. Assuming that R is smoothly (e.g., uniformly) distributed on a segment $0 \le R \le T$, we prove that the random variable $\frac{N_{\alpha}(R) - \pi R^2}{\sqrt{R}}$ has a limit distribution as $T \to \infty$ (independent of the distribution of R), which is absolutely continuous with respect to Lebesgue measure. The density $p_{\alpha}(x)$ is an entire function of x which decays, for real x, faster than $\exp(-|x|^{4-\varepsilon})$. We also obtain a lower bound on the distribution function $P_{\alpha}(x) = \int_{-\infty}^{x} p_{\alpha}(y) dy$ which shows that $P_{\alpha}(-x)$ and $1 - P_{\alpha}(x)$ decay when $x \to \infty$ not faster than $\exp(-x^{4+\varepsilon})$. Numerical studies show that the profile of the density $p_{\alpha}(x)$ can be very different for different α . For instance, it can be both unimodal and bimodal. We show that $\int_{-\infty}^{\infty} x p_{\alpha}(x) dx = 0$, and the variance $D_{\alpha} = \int_{-\infty}^{\infty} x^2 p_{\alpha}(x) dx$ depends continuously on α . However, the partial derivatives of D_{α} are infinite at every rational point $\alpha \in \mathbf{Q}^2$, so D_{α} is analytic nowhere.

Contents

I.	Introduction							434
II.	Ergodic Theorem							443
III.	Almost Periodicity of the Error Function			•				445
IV.	Upper Bound on the Error Term Distribution Density.							450
V.	Lower Bound on the Error Term Distribution Function			•		•		454
	Appendix A. Proof of Theorem 4.1			•		•		456
	Appendix B. Proof of Theorem 4.3			•		•		460
	References	•	·	·	•	•	•	468

^{*} Permanent address: Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel