On the Spectral Problem for Anyons

Garth A. Baker ${ }^{1, \star}$, Geoff S. Canright ${ }^{\star \star}$, Shashikant B. Mulay ${ }^{1}$, and Carl Sundberg ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA
${ }^{2}$ Department of Physics, University of Tennessee, Knoxville, TN 37996, USA

Received June 7, 1991; in revised form June 24, 1992

Abstract

We consider the spectral problem resulting from the Schrödinger equation for a quantum system of $n \geqq 2$ indistinguishable, spinless, hard-core particles on a domain in two dimensional Euclidian space. For particles obeying fractional statistics, and interacting via a repulsive hard core potential, we provide a rigorous framework for analysing the spectral problem with its multi-valued wave functions.

1. Introduction

Let \mathscr{M} be a bounded domain in \mathbb{R}^{2}, with boundary $\partial \mathscr{M}$ which we assume to be smooth. The standard choice for the configuration space for a system of n indistinguishable particles constrained to the surface \mathscr{M}, and satisfying fractional statistics is the manifold

$$
\begin{equation*}
Q_{n}=\left(\mathscr{M}^{n}-\delta_{n}\right) / S_{n} . \tag{1.1}
\end{equation*}
$$

Here \mathscr{M}^{n} denotes the n-fold cartesian product of \mathscr{M} with itself, δ_{n} denotes the subset of points where two or more particle coordinates coincide (the diagonal) and S_{n} denotes the group of permutations on n symbols. The fundamental group of Q_{n}, $\pi_{1}\left(Q_{n}\right)$ is the n-braid group $B_{n}(\mathscr{M})$ of \mathscr{M}.

Now let $\chi: \pi_{1}\left(Q_{n}\right) \rightarrow U(1)$ be a finite, one dimensional, irreducible representation; clearly such a representation is a homomorphism onto the cyclic group of the roots of unity, $U_{m}=\{\exp (2 \pi i k / m), k=0,1, \ldots(m-1)\}$, for some $m \geqq 1$. Let $\widetilde{Q}_{n}^{[m]}$ be the m-fold covering space of Q_{n} associated with the representation \tilde{U}_{m}, with $B_{n}(\mathscr{M})$ acting as deck transformations, and let $\pi: \tilde{Q}_{n}^{[m]} \rightarrow Q_{n}$, be the natural projection. It has been proposed, [10], that the space of admissible wave functions be a complex Hilbert space obtained from the class of smooth equivariant functions

$$
\begin{equation*}
C_{[m]}^{\infty}\left(\tilde{Q}_{n}^{[m]}\right)=\left\{\tilde{\psi}: \tilde{Q}_{n}^{[m]} \rightarrow \mathbb{C}: \tilde{\psi}\left(\gamma z, \gamma z^{*}\right)=\chi(\gamma) \tilde{\psi}\left(z, z^{*}\right), \text { for all } \gamma \in B_{n}(\mathscr{M})\right\} \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: * Partially supported by the Mathematical Sciences Research Institute, Berkeley California, under NSF Grant \# DMS 8505550
 ** Partially supported under NSF Grant no. DMR-9101542

