Commun. Math. Phys. 153, 277-295 (1993)

On the Spectral Problem for Anyons

Garth A. Baker^{1,*}, Geoff S. Canright^{**}, Shashikant B. Mulay¹, and Carl Sundberg¹

¹ Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA

² Department of Physics, University of Tennessee, Knoxville, TN 37996, USA

Received June 7, 1991; in revised form June 24, 1992

Abstract. We consider the spectral problem resulting from the Schrödinger equation for a quantum system of $n \ge 2$ indistinguishable, spinless, hard-core particles on a domain in two dimensional Euclidian space. For particles obeying fractional statistics, and interacting via a repulsive hard core potential, we provide a rigorous framework for analysing the spectral problem with its multi-valued wave functions.

1. Introduction

Let \mathcal{M} be a bounded domain in \mathbb{R}^2 , with boundary $\partial \mathcal{M}$ which we assume to be smooth. The standard choice for the configuration space for a system of *n* indistinguishable particles constrained to the surface \mathcal{M} , and satisfying fractional statistics is the manifold

$$Q_n = (\mathcal{M}^n - \delta_n) / S_n . \tag{1.1}$$

Here \mathcal{M}^n denotes the *n*-fold cartesian product of \mathcal{M} with itself, δ_n denotes the subset of points where two or more particle coordinates coincide (the diagonal) and S_n denotes the group of permutations on *n* symbols. The fundamental group of Q_n , $\pi_1(Q_n)$ is the *n*-braid group $B_n(\mathcal{M})$ of \mathcal{M} .

Now let $\chi: \pi_1(Q_n) \to U(1)$ be a finite, one dimensional, irreducible representation; clearly such a representation is a homomorphism onto the cyclic group of the roots of unity, $U_m = \{\exp(2\pi i k/m), k = 0, 1, \dots, (m-1)\}$, for some $m \ge 1$. Let $\tilde{Q}_n^{[m]}$ be the *m*-fold covering space of Q_n associated with the representation U_m , with $B_n(\mathcal{M})$ acting as deck transformations, and let $\pi: \tilde{Q}_n^{[m]} \to Q_n$, be the natural projection. It has been proposed, [10], that the space of admissible wave functions be a complex Hilbert space obtained from the class of smooth equivariant functions

$$C_{[m]}^{\infty}(\tilde{Q}_{n}^{[m]}) = \left\{ \tilde{\psi}: \tilde{Q}_{n}^{[m]} \to \mathbb{C}: \tilde{\psi}(\gamma z, \gamma z^{*}) = \chi(\gamma)\tilde{\psi}(z, z^{*}), \text{ for all } \gamma \in B_{n}(\mathcal{M}) \right\}.$$
(1.2)

^{*} Partially supported by the Mathematical Sciences Research Institute, Berkeley California, under NSF Grant # DMS 8505550

^{**} Partially supported under NSF Grant no. DMR-9101542