Quantum Dressing Orbits on Compact Groups

Branislav Jurčo ${ }^{1, \star}$ and Pavel Šťovíček ${ }^{2}$
${ }^{1}$ A. Sommerfeld Institute, Technical University of Clausthal, W-3392 Clausthal-Zellerfeld, Germany, and Department of Optics, Palacký University, Vídeňská 15, CS-77146 Olomouc, Czechoslovakia**
${ }^{2}$ Department of Mathematics, Faculty of Nuclear Science, Trojanova 13, CS-12000 Prague, Czechoslovakia

Received January 20, 1992; in revised form July 5, 1992

Abstract

The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as $*$-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible $*$-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient "coherent states" are introduced and a correspondence between classical and quantum observables is given.

Contents

0 . Introduction 97

1. Quantum Groups 98
2. Poisson Lie Structure on Simple Lie groups 101
3. Quantum Dressing Transformation 104
4. Quantum Double for Compact Groups 107
5. Quantum Leaf on $S U_{q}(2)$ 111
6. Quantum Orbit Related to Quantum Weyl Element 115
7. Irreducible *-Representations for Algebras of Quantum Functions on Compact Groups 119
8. Quantization of Symplectic Leaves of the Poisson Lie Structure 123
References 126

0. Introduction

Quantum groups were recently introduced by Drinfel'd [7], Jimbo [10], and Woronowicz [30]. In Woronowicz's approach a comnpact quantum group is regarded as a

[^0]
[^0]: * Humboldt Fellow
 ** Permanent address

