N=2 Topological Gauge Theory, the Euler Characteristic of Moduli Spaces, and the Casson Invariant

Matthias Blau^{1,3} and George Thompson^{2,3}

 NIKHEF-H, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands
Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, W-6500 Mainz, Germany

Received December 24, 1991; in revised form August 11, 1992

Abstract. We discuss gauge theory with a topological N = 2 symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli space \mathcal{M} and the partition function equals the Euler number $\chi(\mathcal{M})$ of \mathcal{M} . We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics and introduce a new kind of supersymmetric quantum mechanics based on the Gauss-Codazzi equations. We interpret the gauge theory actions from the Atiyah-Jeffrey point of view and relate them to supersymmetric quantum mechanics on spaces of connections. As a consequence of these considerations we propose the Euler number $\chi(\mathcal{M})$ of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. We also comment on the possibility of constructing a topological version of the Penner matrix model.

Contents

1.	Introduction			42
2.	The Mathai-Quillen Formalism and Supersymmetric Quantum Mechanics			45
	2.1. The Mathai-Quillen Formalism			45
	2.2. Supersymmetric Quantum Mechanics			
	from the Mathai-Quillen Formalism and vice versa			46
	2.3. The Gauss-Codazzi Form of Supersymmetric Quantum Mechanics .			49
3.	N=2 Topological Gauge Theories and the Euler Characteristic			
	of Moduli Spaces of Connections			51
	3.1. Riemannian Geometry of Spaces of Connections			51
	3.2 and its Lagrangian Realization			53
4.	Geometry of $N=2$ Topological Gauge Theories			
	4.1. The Atiyah-Jeffrey Interpretation	•		58

¹ e-mail: blau@ictp.trieste.it

² e-mail: thompson@ictp.trieste.it

³ From Oct. 1992: ictp, P.O. Box 586, I-34100 Trieste, Italy