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Abstract. We diagonalize the anti-ferroelectric JOfZ-Hamiltonian directly in the
thermodynamic limit, where the model becomes invariant under the action of
l^(sϊ(2)). Our method is based on the representation theory of quantum affine
algebras, the related vertex operators and KZ equation, and thereby bypasses the
usual process of starting from a finite lattice, taking the thermodynamic limit and
filling the Dirac sea. From recent results on the algebraic structure of the corner
transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The
rest of the eigenvectors are obtained by applying the vertex operators, which act as
particle creation operators in the space of eigenvectors. We check the agreement of
our results with those obtained using the Bethe Ansatz in a number of cases, and
with others obtained in the scaling limit - the su(2)-invariant Thirring model.

0. Introduction

0.1. A Diagonalization Scheme. In this paper we give a new scheme for diagonaliz-
ing the 1-dimensional XXZ spin chain
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for Δ < — 1, directly in the thermodynamic limit, using the representation theory
of the quantum affine algebra Uq(Sl(2)): we consider the infinite tensor product

W = <g> C 2 (x) C 2 ® C 2 (x) C 2 (x) , (0.2)


