Communications in Mathematical Physics © Springer-Verlag 1993

Regularity of Weak Solutions to a Two-Dimensional Modified Dirac-Klein-Gordon System of Equations

Yuxi Zheng*

Courant Institute, New York University, New York, NY 10012, USA

Received March 6, 1992

Abstract. We show that solutions to the modified Dirac-Klein-Gordon system in standard notation

$$\begin{cases} (-i\gamma^{\mu}\partial_{\mu} + M)\psi = 0\\ (-\Box + m^{2})\varphi = g(t)\psi^{\dagger}\gamma^{0}\psi \end{cases}$$

in two space dimensions with complex-valued initial data $\psi(0, x) \in L^2(\mathbb{R}^2; \mathbb{C}^4)$, real valued $\varphi(0, x) \in W^{1,2}(\mathbb{R}^2)$ and $\varphi_t(0, x) \in L^2(\mathbb{R}^2)$ have regularity

$$\begin{split} \psi^{\dagger} \gamma^{0} \psi &\equiv |\psi_{1}|^{2} + |\psi_{2}|^{2} - |\psi_{3}|^{2} - |\psi_{4}|^{2} \in \mathscr{H}^{1}_{\text{loc}}(\mathbb{R}^{3}), \\ \varphi &\in L^{\infty}_{\text{loc}}(\mathbb{R}^{1}; L^{2}(\mathbb{R}^{2})) \;. \end{split}$$

Here $\mathscr{H}^1_{loc}(\mathbb{R}^3)$ denotes the (local) Hardy space, and g(t) is assumed to be in $C^1(\mathbb{R})$ and g(0) = 0. Consequently nonlinear terms $\varphi \psi$ which appear in the classical coupled Dirac-Klein-Gordon system (with the modification $g = g(t) \in C^1$ and g(0) = 0) can then be defined in $L^\infty_{loc}(\mathbb{R}^1_+; L^1(\mathbb{R}^2))$. We hope these results will be useful in establishing the existence of weak solutions to the classical coupled Dirac-Klein-Gordon system in the framework of compensated compactness.

Table of Contents

1. Introduction	68
2. Preliminaries	69
3. An Estimate on Dirac Equations	73
4. An Estimate on the Klein–Gordon Equation	
5. Some Remarks	
(i) Existence of weak solutions in 1-D	82
(ii) 2-D classical coupled DKG system	82
Appendix	

^{*} Research at MSRI and IAS supported in part by NSF Grant DMS-8505550 and DMS-9100383