An Asymptotic Expression for the Splitting of Separatrices of the Rapidly Forced Pendulum

Amadeu Delshams¹ and Teresa M. Seara²

¹ Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, E-08071 Barcelona, Spain

² Departament de Matemàtica Aplicada I, E.T.S.E.I.B., U. Politècnica de Catalunya, Diagonal 647, E-08028 Barcelona, Spain

Received September 1, 1991; in revised form March 16, 1992

Abstract. The measure of the splitting of the separatrices of the rapidly forced pendulum t

$$\ddot{x} + \sin x = \mu \sin \frac{t}{\varepsilon} \,,$$

is considered as a model problem that has been studied by different authors. Here ε , μ are small parameters, $\varepsilon > 0$, but otherwise independent. The following formula for the angle α between separatrices is established

$$\alpha = \frac{\pi}{2\varepsilon} \frac{\mu}{\cosh \frac{\pi}{2\varepsilon}} \left[1 + O(\mu, \varepsilon^2) \right].$$

This formula is also valid for the particular case $\mu = \varepsilon^p$, with p > 0, $\varepsilon > 0$, and agrees with the one provided by the first order Poincaré–Melnikov theory that cannot be applied directly, due to the exponentially small dependence of α on the parameter ε .

1. Introduction

Let us consider the equation of the rapidly forced pendulum

$$\ddot{x} + \sin x = \mu \sin \frac{t}{\varepsilon}, \qquad (1.1)$$

where ε , μ are small parameters, $0 < \varepsilon < 1$, but otherwise independent. This equation can be considered as a model of a two-dimensional integrable system perturbed by a very rapidly oscillatory forcing. Also, performing the change of time $\tau = t/\varepsilon$, it can be considered as a nearly integrable system with slow dynamics:

$$x'' + \varepsilon^2 \sin x = \mu \varepsilon^2 \sin \tau \quad \left(' = \frac{d}{d\tau} \right). \tag{1.2}$$