Commun. Math. Phys. 150, 193-208 (1992)

Renormalization Group and the Ginzburg-Landau Equation

J. Bricmont^{1,*} and A. Kupiainen^{2,*}

¹ UCL, Physique Theorique, B-1348 Louvain-la-Neuve, Belgium

² Rutgers University, Mathematics Department, New Brunswick, NJ 08903, USA

Received April 27, 1992

Abstract. We use Renormalization Group methods to prove detailed long time asymptotics for the solutions of the Ginzburg-Landau equations with initial data approaching, as $x \to \pm \infty$, different spiraling stationary solutions. A universal pattern is formed, depending only on this asymptotics at spatial infinity.

1. Introduction

Parabolic PDE's often exhibit universal scaling behavior in long times: the solution behaves as $u(x,t) \sim t^{-\frac{\alpha}{2}} f^*(t^{-\frac{\beta}{2}}x)$ as $t \to \infty$, where the exponents α and β and the function f^* are *universal*, i.e. independent on the initial data and equation, in given classes. This fact has an explanation in terms of the Renormalization Group (RG) [10, 11, 4], very much like the similar phenomenon in statistical mechanics.

In [4] a mathematical theory of this RG was developed and here we would like to apply these ideas to a concrete situation, namely the Ginzburg-Landau equation

$$\dot{u} = \partial^2 u + u - |u|^2 u \,, \tag{1}$$

where $u: \mathbf{R} \times \mathbf{R} \to \mathbf{C}$, is complex, $\partial = \frac{\partial}{\partial x}$ and the dot denotes the time derivative. Equation (1) has a two parameter family of stationary solutions

$$u_{q\theta}(x) = \sqrt{1 - q^2} e^{i(qx+\theta)}, \qquad (2)$$

and a natural question is to inquire about the time development of initial data u(x) which approach two solutions at $\pm\infty$:

$$\lim_{c \to \pm \infty} |u(x) - u_{q_{\pm}\theta_{\pm}}(x)| = 0.$$
(3)

3

^{*} Supported by NSF grant DMS-8903041 and by EEC Grant SCI-CT91-0695TSTS