Commun. Math. Phys. 149, 623-636 (1992)

Calculation of General *p*-Adic Feynman Amplitude*

V.A. Smirnov

Nuclear Physics Institute of Moscow State University, Moscow 119899, Russia

Received November 4, 1991

Abstract. The general *n*-point massless *p*-adic Feynman amplitude with arbitrary parameters of analytic regularization for each line is calculated. This result is presented in the form of a sum over hierarchies of a given graph. The structure of ultraviolet and infrared divergences of *p*-adic Feynman amplitudes is characterized and the star-triangle uniqueness identity in the *p*-adic case is derived.

1. Introduction

In the past four years *p*-adic analysis [4, 15, 21] was applied in quantum theory [1, 7–10, 12, 13, 16–20, 22, 27, 28]. Several approaches were used. Within each of these approaches something was considered to be *p*-adic rather than real. For example, this can be the world sheet of a string (see, e.g., [7–10, 17]), or, our space-time itself [28]. In a paper by Lerner and Missarov [16] a generalized Koba-Nielsen amplitude was explicitly calculated and it was explained how an arbitrary one-dimensional *p*-adic massless Feynman amplitude can be computed.

The purpose of this work is to calculate the general p-adic massless Feynman amplitude with arbitrary parameters of analytic regularization in arbitrary space-time dimensions. The result will be written as a sum over hierarchies of the set of vertices of the given graph.

The paper is organized as follows. In the next section the main definitions of p-adic analysis are given and basic integrals are listed. In Sect. 3 auxiliary vacuum-type p-adic Feynman integrals are computed, and in Sect. 4 calculation of the general massless Feynman amplitude is presented. In Sect. 5 results of Sect. 4 are applied to simplest Feynman amplitudes. Furthermore, ultraviolet and infrared divergences of Feynman amplitudes are characterized and the star-triangle uniqueness identity is derived. Finally, in the Conclusion, the possibility of adelic formulae for massless Feynman amplitudes is discussed.

^{*} Supported by Alexander von Humboldt-Stiftung