Commun. Math. Phys. 149, 549-571 (1992)

Weak Disorder Expansions for the Anderson Model on a One Dimensional Strip at the Center of the Band

Athanasios Speis

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received March 13, 1991; in revised form September 18, 1991

Abstract. We study the asymptotic behavior of the averaged diagonal matrix elements of the Greens kernel for the Anderson Model on a one-dimensional strip and for a set of special energies close to the center of the band.

I. Introduction

Let ℓ be a positive integer and let \mathscr{D}_{ℓ} be the one dimensional lattice strip of with ℓ , i.e., $\mathscr{D}_{\ell} = \mathbb{Z} \times \{1, \ldots, \ell\}$, where \mathbb{Z} is the set of all integers.

The Anderson model [1] on \mathcal{D}_{ℓ} is given by the random Hamiltonian $H_{\lambda} = -\frac{1}{2}\Delta + \lambda V$ on $\ell^{2}(\mathcal{D}_{\ell})$, where

$$(\Delta u)(x) \sum_{y \in \mathscr{D}_{\ell}} (\Delta)_{x, y} u(y)$$

with

$$(\Delta)_{x,y} = \begin{cases} 1 & \text{if } x - y \in \{(0,1), (-1,0), (1,0), (0,-1)\} \\ 0 & \text{otherwise}, \end{cases}$$

and

$$(Vu)(x) = V(x) u(x),$$

where $\{V(x)\}_{x \in \mathcal{D}_{\ell}}$ are i.i.d. real random variables with common distribution μ whose characteristic function will be denoted by h and λ is a real number.

Let *m* be a positive integer, Λ^m be the discrete rectangle $[-m, m] \times \{1, 2, ..., \ell\}$ and $H_{m,\lambda}$ denote the H_{λ} restricted to $\ell^2(\Lambda_{\ell})$ with boundary conditions u(x) = 0 for all $x \notin \Lambda^m$. Let $x, y \in \mathcal{D}_{\ell}, \eta > 0$ and let $\delta_x, \delta_y \in \ell^2(\mathcal{D}_{\ell})$ be the delta functions at the points x and y respectively. We shall use the notations

$$G_m^{\lambda}(x, y, E + i\eta) = \left\langle \delta_x \left| \frac{1}{H_{m,\lambda} - E - i\eta} \right| \delta_y \right\rangle,$$
$$J_{\lambda}^j(E + i\eta) = \lim_{m \to +\infty} \mathbb{E} \left\{ G_m^{\lambda}((0, j), (0, j), E + i\eta) \right\},$$

where $j = 1, ..., \ell$ and $E\{\cdot\}$ denotes the expectation with respect to the disorder.