Action of Truncated Quantum Groups on Quasi-Quantum Planes and a Quasi-Associative Differential Geometry and Calculus

Gerhard Mack and Volker Schomerus
II. Institut für Theoretische Physik, Universität Hamburg ${ }^{\star}$, Luruper Chaussee 149, W-2000 Hamburg 50, FRG

Received March 13, 1992

Abstract

If q is a $p^{\text {th }}$ root of unity there exists a quasi-coassociative truncated quantum group algebra whose indecomposable representations are the physical representations of $U_{q}\left(s l_{2}\right)$, whose coproduct yields the truncated tensor product of physical representations of $U_{q}\left(s l_{2}\right)$, and whose R-matrix satisfies quasi-Yang Baxter equations. These truncated quantum group algebras are examples of weak quasitriangular quasiHopf algebras ("quasi-quantum group algebras") \mathscr{G}^{*}. We describe a space \mathscr{F}^{T} of "functions on the quasi quantum plane," i.e. of polynomials in noncommuting complex coordinate functions z_{a}, on which multiplication operators Z_{a} and the elements of \mathscr{G}^{*} can act, so that z_{a} will transform according to some representation τ^{f} of \mathscr{G}^{*}. \mathscr{F}^{T} can be made into a quasi-associative graded algebra $\mathscr{F}^{T}=\bigoplus_{n>0} \mathscr{F}^{T(n)}$ on which elements of \mathscr{G}^{*} act as generalized derivations. In the special case of the truncated $U_{q}\left(s l_{2}\right)$ algebra we show that the subspaces $\mathscr{F}^{T(n)}$ of monomials in z_{a} of $n^{\text {th }}$ degree vanish for $n \geq p-1$, and that $\mathscr{F}^{T(n)}$ carries the $2 J+1$ dimensional irreducible representation of \mathscr{G}^{*} if $n=2 J, J=0, \frac{1}{2}, \ldots, \frac{1}{2}(p-2)$. Assuming that the representation τ^{f} of the quasi-quantum group algebra gives rise to an R-matrix with two eigenvalues, we develop a quasi-associative differential calculus on \mathscr{F}^{T}. This implies construction of an exterior differentiation, a graded algebra $\Lambda \mathscr{F}^{T}=\bigoplus \Lambda^{n} \mathscr{F}^{T}$ of forms and partial derivatives. A quasi-associative generalization of noncommutative differential geometry is introduced by defining a covariant exterior differentiation of forms. It is covariant under \mathscr{S}^{*}-valued gauge transformations.

0. Introduction

To explain the problem which we address, we recall the theory of the complex quantum plane [1,2,3].

The algebra \mathscr{F} of polynomial functions on the quantum plane is a noncommutative but associative deformation of the commutative algebra $\mathscr{F}_{c l}$ of polynomial functions

[^0]
[^0]: * E-mail: IO2MAC@DHHDESY3.BITNET

