Action of Truncated Quantum Groups on Quasi-Quantum Planes and a Quasi-Associative Differential Geometry and Calculus

Gerhard Mack and Volker Schomerus

II. Institut für Theoretische Physik, Universität Hamburg*, Luruper Chaussee 149, W-2000 Hamburg 50, FRG

Received March 13, 1992

Abstract. If q is a p^{th} root of unity there exists a quasi-coassociative truncated quantum group algebra whose indecomposable representations are the physical representations of $U_q(sl_2)$, whose coproduct yields the truncated tensor product of physical representations of $U_q(sl_2)$, and whose *R*-matrix satisfies quasi-Yang Baxter equations. These truncated quantum group algebras are examples of weak quasitriangular quasi-Hopf algebras ("quasi-quantum group algebras") \mathscr{G}^* . We describe a space \mathscr{F}^T of "functions on the quasi quantum plane," i.e. of polynomials in noncommuting complex coordinate functions z_a , on which multiplication operators Z_a and the elements of \mathscr{G}^* can act, so that z_a will transform according to some representation τ^f of \mathscr{G}^* . \mathscr{F}^T can be made into a quasi-associative graded algebra $\mathscr{F}^T = \bigoplus_{n>0} \mathscr{F}^{T(n)}$ on which

elements of \mathscr{G}^* act as generalized derivations. In the special case of the truncated $U_q(sl_2)$ algebra we show that the subspaces $\mathscr{F}^{T(n)}$ of monomials in z_a of n^{th} degree vanish for $n \ge p-1$, and that $\mathscr{F}^{T(n)}$ carries the 2J + 1 dimensional irreducible representation of \mathscr{G}^* if n = 2J, $J = 0, \frac{1}{2}, \ldots, \frac{1}{2}(p-2)$. Assuming that the representation τ^f of the quasi-quantum group algebra gives rise to an *R*-matrix with two eigenvalues, we develop a quasi-associative differential calculus on \mathscr{F}^T . This implies construction of an exterior differentiation, a graded algebra $A\mathscr{F}^T = \bigoplus A^n \mathscr{F}^T$ of forms and partial derivatives. A quasi-associative generalization of noncommutative differential geometry is introduced by defining a covariant exterior differentiation of forms. It is covariant under \mathscr{G}^* -valued gauge transformations.

0. Introduction

To explain the problem which we address, we recall the theory of the complex quantum plane [1, 2, 3].

The algebra \mathscr{F} of polynomial functions on the quantum plane is a noncommutative but associative deformation of the commutative algebra \mathscr{F}_{cl} of polynomial functions

^{*} E-mail: I02MAC@DHHDESY3.BITNET